
University of Edinburgh

Department of Computer Science

Tools for the Visualisation of

Scottish Country Dances

4th Year Project Report

Ian Brockbank

November 3, 1994

Abstract

The aim of the project was to provide tools to make it easier for beginners to learn
Scottish Country Dancing. The approach taken was to provide a tool to allow dances
to be animated. Scottish Country Dances were analysed for structure, and from this a
�le format and an internal data structure were derived. A parser was written to build
the data structure from �les in the speci�ed format. A module was then developed to
produce animations of these dances.

Acknowledgments

Thanks are due to my supervisor, Frank Stacey, for many chats throughout the year,
some of them even relevant to the project. His advice on matters related to both
computing and dancing has been most useful, not least for gettting me thinking about
other avenues of exploration and alternate approaches to problems.

Thanks are also due to Rob Procter for referring me to St�ephane Chatty's paper
([17]).

Contents

1 Introduction 1

2 Existing methods of description 2

2.1 Text cribs : 2
2.2 Pilling-style diagrams : 2
2.3 MSc thesis by Richard Goss : 5
2.4 Shortcomings : 5

3 The structure of Scottish Country Dances 7

3.1 Terminology : 7
3.1.1 Orientation terms : 7
3.1.2 Other terms : 8

3.2 Structure : 9

4 The �le format|an intuitive description 12

4.1 The identifying details : 12
4.2 The position section : 12
4.3 The de�nition section : 14
4.4 Comments : 15

5 The �le format|formal de�nition 16

5.1 The syntax : 16
5.2 The semantics : 16

5.2.1 Terminal characters : 16
5.2.2 Comments : 16
5.2.3 Whitespace : 17
5.2.4 Terminal strings : 17
5.2.5 Numbers : 17
5.2.6 The �le and �gure de�nitions : 18
5.2.7 Naming �gures : 18
5.2.8 The initial con�guration of the dancers : : : : : : : : : : : : : : 19
5.2.9 The sets : 19
5.2.10 Positions : 19
5.2.11 The component �gures : 20
5.2.12 Figure parameters : 20
5.2.13 Repeats : 21
5.2.14 List of dancers : 21

6 Features of C++ 22

6.1 The basics : 22
6.2 Overloading : 24
6.3 Templates : 24
6.4 Advantages and disadvantages of C++ : : : : : : : : : : : : : : : : : : : 26

7 The operating and programming environments 27

7.1 MS-Windows programming : 27
7.1.1 The structure of an MS-Windows program : : : : : : : : : : : : 27

i

7.1.2 Callbacks : 28
7.1.3 Multitasking : 28

7.2 The Borland ObjectWindows library : 29

8 The data structures 31

8.1 It �gures. : 31
8.1.1 The central properties : 31
8.1.2 The sub�gure description classes : : : : : : : : : : : : : : : : : : 31
8.1.3 The animation Figure classes : 32
8.1.4 The CompositeFigure class : 33

8.2 The central look-up table of �gure de�nitions : : : : : : : : : : : : : : : 33
8.3 The supporting animation data structures : : : : : : : : : : : : : : : : : 34

8.3.1 The real-time module : 34
8.3.2 The display classes: Dancers and Sets : : : : : : : : : : : : : : : 34

9 The derivation of the atomic �gure functions 37

9.1 The coordinate system : 37
9.1.1 Longwise sets : 37
9.1.2 Square, triangular and other polygonal sets : : : : : : : : : : : : 38

9.2 The atomic �gures : 39
9.2.1 Straight-line movements : 39
9.2.2 Curved movements : 41
9.2.3 Crosses : 43
9.2.4 Casting o� and up : 43
9.2.5 Circular �gures : 44
9.2.6 Reels : 45
9.2.7 Figure of Eight : 47
9.2.8 Stepping up and down : 48
9.2.9 Petronella : 48

9.3 Couple �gures : 49
9.3.1 Promenade : 49
9.3.2 Allemande : 49
9.3.3 Poussette : 49

10 The dance compiler 50

11 The animation 51

11.1 Running an animation : 51
11.2 Problems encountered : 52

11.2.1 Screen refresh : 52
11.2.2 Finishing and synchronisation : 52
11.2.3 Phrasing : 53
11.2.4 Reverse playback : 53

12 Conclusions 55

12.1 Further work : 55
12.1.1 A parser for RSCDS-style cribs : : : : : : : : : : : : : : : : : : : 55
12.1.2 Automated crib generation : 56
12.1.3 A devising package : 56
12.1.4 A dance database : 56
12.1.5 A ball programme editor : 56

ii

12.1.6 Music : 57

iii

List of Figures

2.1 \Duke of Perth"|a sample dance in the text crib format. From RSCDS
book 1. : 3

2.2 \McEwan's Revenge"|A sample dance in the format used by Pilling : : 4

3.1 \The Millwheel"|A sample dance illustrating basic dance structure, con-
current motion and recursive de�nition. : : : : : : : : : : : : : : : : : : 10

4.1 A sample dance �le|\Duke of Perth" : : : : : : : : : : : : : : : : : : : 13

7.1 A simple MS-Windows message loop. : 27

8.1 The Figure hierarchy. : 32

9.1 The longwise set coordinate system : 37
9.2 The square set coordinate system : 38
9.3 The mapping for the maths of the Curve �gure. : : : : : : : : : : : : : : 41
9.4 Reels of three, four and more. : 45

11.1 The active �gures in an animation : 51

iv

List of Tables

9.1 The atomic �gures de�ned|quick reference. : : : : : : : : : : : : : : : : 40

v

1. Introduction

There are three major forms of dancing in Scotland. First there are the Highland dances,
such as the Sword Dance and the Highland Fling. These are mainly solo dances, with
the emphasis on footwork. Then there are the ceilidh dances. These are couple dances
in the main. They are known to many and done with much vigour and laughter, but
seldom with any great �nesse. Finally there are the Scottish Country dances. It is with
these that this project is concerned.

These involve groups, or \sets", of six, eight, ten or sometimes more dancers in
couples with a \man" partnering a \woman", although sometimes due to a shortage of
one sex or the other some men are female, or (less commonly) women male. The dancers
in the group co-operate to describe patterns, or \�gures", of varying complexity. A
dance generally consists of a sequence of these formations which leaves the dancers in a
permuted order; the dance is repeated until all dancers are back in their original places.

Since there are around �fty basic �gures, and more are being created all the time,
there is clearly the potential for a large number of di�erent dances. Indeed one count
puts the number at around 10 000 [16]. This makes it diÆcult to remember which dance
is which. Also the number of �gures is a great barrier to beginners learning to dance.

There are a couple of representations in common use nowadays. One is a textual form
as used by the Royal Scottish Country Dance Society (RSCDS) [3]. This is descriptive,
but can lead to confusion through sheer weight of words and the need to learn the
terminology. Accordingly, in 1955 F. L. Pilling brought out a book [1] which describes the
dances in a more diagrammatic mnemonic form. These diagrams can also get involved
and confusing, and both forms require the reader to be familiar with the formations.
The two representations are described in more detail in chapter 2.

The aim of this project is to provide tools to aid the user in visualising how �gures
work, and how they combine to make dances. It does this primarily through animation.

A �le format has been developed with the aim of denoting dances in a compact
yet human-readable form. This draws from both the structure of dances as determined
during the development of the data structures, and from the standard text crib format.
An interface has also been developed using the MS Windows operating environment.
This allows the easy editing of �les as well as viewing of the animations using video
recorder style controls.

Note on the use of the personal pronoun

To avoid awkward constructions the feminine forms of the personal pronouns, she and
her, will also be used to mean he, him and his throughout this report.

1

2. Existing methods of description

The methods of description which currently exist are discussed here. A brief description
is given of each, and their strengths and weaknesses detailed.

The descriptions covered are:

1. Text Cribs, as published by the RSCDS.

2. The diagrammatic form developed by F.L.Pilling.

3. An MSc by Richard Goss at the University of St. Andrews dated 1984.

2.1 Text cribs

These are typi�ed by those published by the Royal Scottish Coutry Dance Society
[3]. Figure 2.1 gives an example, taken from RSCDS book 1.

Cribs in this format are written in English prose, with set guidelines for how concepts
should be expressed. As can be seen from the example, such a crib has a header giving
the name of the dance and its type. Its source is also often quoted, as well as the initial
con�guration of the participating dancers, and requested tunes.

There then follows a list of bars, together with instructions. These instructions are
given using standard terms and following approximately the same structure every time,
namely participants actions [extra information] [�nishing positions] [\while" participants
: : :].

By using standard English this notation can be as expressive as the devisor of the
dance or the writer of the crib can make it. However the prose lacks a de�nitive formality
which can lead to di�ering interpretations of the same dance when it is danced by
di�erent groups. It can also become extremely verbose, which drastically slows down
the process of reading and understanding the instructions.

The standard terms and layout mean that someone familiar with the format can �nd
information quickly and eÆciently. The down side of this is that the jargon makes the
description all but impenetrable to the non-expert reader.

2.2 Pilling-style diagrams

These were �rst published in 1955 by F. L. Pilling [1]. They have been taken over by
a committee, revised several times to add new (or missing) dances and to make the
notation more consistent, both with itself and between dances. The book is currently
in its sixth edition [2].

Figure 2.2 shows a sample dance using this notation. It is of a dance which was
devised to look impressive in this notation and so is more complex than the average
diagram. It should still give an idea of the format. For comparison, the textual version
spans several pages.

The approach taken by Mr Pilling was to denote �gures using diagrams, with set
mnemonic symbols for common �gures. For instance a circle is represented by a circle
with the number of people involved given in the centre. A reel, which is like a �gure of
eight for three people, or a �gure of eight with an extra loop for four people, is shown
as two (or three, or n� 1 for n people) small circles side by side and touching in a line.

2

Duke of Perth
RSCDS I{3

(Reel)
Four couple longwise set

Tune: Duke of Perth's Reel.
Music Description

Bars

1{4 1st couple turn with right hands and cast o� one place on own sides. Second
couple step up on bars 3{4.

5{8 1st couple turn with left hands to face �rst corners.

9{10 1st couple turn corners with right hands.

11{12 1st couple turn with left hands to face second corners

13{14 1st couple turn second corners with right hands.

15{16 1st couple turn with left hands to face �rst corners.

17{20 1st couple set to and turn �rst corners.

21{24 1st couple set to and turn second corners.

25{30 Reels of three on the sides, 1st woman with 2nd and 3rd men, 1st man with 3rd
and 2nd women.

31{32 1st couple cross over to own sides, in second place.

Repeat, having passed a couple.

Figure 2.1: \Duke of Perth"|a sample dance in the text crib format. From RSCDS
book 1.

3

2 3 2 3

2

1

44

3

2 3

1

RT1

2
/

1

4

1

4

1

4

1

4

8

1 4

RA

14 14

8

6 BARS

2 4 & 1 3

1 1

3 1 4 2

2

2

3

3

S

4 1
XL

XR
1 1

4 3 2 1

McEwan's Revenge R96New Scotland Country Dance Society

S LAS RA

1

4
2

B T
to

Ladies Men

T R

1 4 2 3

1 4 2 4 1 3

1 2 & 3 4

4

6 BARS

32 BARS

S

2 3

S

S X

X

4 3

ALL

Notation courtesy of F. L. Pilling. Used with permission from F. L. Pilling's successors. Dance copyright EUNSCDS 1994

L

RT

R

LA
R

ALL

S

2

1

3

3

Figure 2.2: \McEwan's Revenge"|A sample dance in the format used by Pilling

Many of the common �gures have representations which take up much less space
than written forms. This is the main strength of this format, in that it allows a dance
to be expressed extremely compactly and hence it is possible to remind oneself of how
a dance runs in a matter of moments.

That is all very well, and obviously the diagrammatic mnemonics, where used, have
international application. Other mnemonics are less intuitive. For instance a bold-
face S is used to indicate a setting step, and a T for a turn. This is all right for
the English-speakers, once they have learned the notation, but not necessarily so for
people in other countries. A German would not �nd \T" an intuitive shorthand for
drehen. Furthermore, �gures for which no symbol has been de�ned are shown by name:
\TOURN�EE" in From Scotia's Shores we're Noo Awa' [2], for example. It is no more
obvious what is meant here than when it occurs in the RSCDS-style cribs if the movement
is unfamiliar.

Another failing of this format is that it does not give the qualifying information
about a �gure which may be given in an RSCDS-style crib, and so is even more open
to di�ering interpretations. To be fair, the notation was never designed for this. In the
preface to the sixth edition they say:

We should like to emphasise that the book is designed as an aide-memoire
and, although we have tried to include as much detail as possible in diagram-
matic form, anybody who wishes to learn a dance should refer to the original
printed instructions.

Where a movement is non-standard Pilling uses arrows|solid for men, dashed for
ladies|to trace the path followed on a representation of the set. This is �ne for sim-
ple movements, indeed it is often a lot clearer than the corresponding RSCDS-style
description, but it can get messy when there are several people moving at once.

4

Finally, some movements, such as two couples changing places on the sideline, are
much easier to express in text than in the Pilling format. The corresponding represen-
tation would explicitly show the women and men simultaneously \crossing", as near the
bottom left-hand corner of �gure 2.2.

2.3 MSc thesis by Richard Goss

Richard Goss' thesis submitted as part of his MSc in Computational Science at the
University of St. Andrews in 1984 [16] was entitled Computer Plotting of Country Dance
Figures. It was borrowed and studied in the hopes that it might contain some useful
information.

He was concerned with methods of expressing Country Dances which were totally un-
ambiguous, culturally independent and standard. His approach was to build a database
of �gures which could be referred to by another database of dances. This way �gures
would be described in the same way every time. The �gures database could be used to
produce textual descriptions of the �gures, or to generate FORTRAN code to operate a
plotter. The dance database was organised to allow searches by name, devisor, source,
tunes or component �gures.

This approach required the user to learn the various contractions used to refer to
the �gures. It resulted in extremely compact representations which were totally unin-
telligible.

For instance

927R1(21R)CORN RIGS/A6M1 ASI1 AGG1 C8P2 :969PI

produced, after being run through his program:

CORN RIGS is a 32 bar (duple minor) Contra in 2/4 (Reel or Hornpipe)

time.

RSCDS(1927): progression=1. Secondary source(s) - 1969PI

1:cast;cast up;

1:figure of eight across; (in down);;

1:down and back;

12:poussette;

The �gure de�nitions, sources, progressions, text and graphics plots were all hand-
coded. The programs he developed were purely administrative.

2.4 Shortcomings

A major problem facing a beginnner is learning the basic movements, and how these
movements �t together in dances. The methods of notation described above all fall
down here. They all assume that the dancer is familiar with the �gures and the jargon,
and that she can visualise how the movements follow on one from the other.

The main aim of this project was to provide a suite of tools to tackle just this problem:
to aid dancers in learning dancing and dances. These were intended to allow the user
to extend the functionality with relative ease, something not provided by Richard Goss'
system. This would mean the collection of dances could be as up-to-date as required.

Various possible avenues of exploration were considered, the following being some of
the more prominent:

5

1. A representation of dances which allowed them to be stored eÆciently. This also
needed to be possible to be read by humans, to allow easy veri�cation.

2. A parser which would read in �les in a format very close to the text crib format
described in section 2.1, and convert them to an internal representation for further
use.

3. A module which would take dances in the internal representation and use them to
generate the corresponding cribs, in either RSCDS-style or Pilling-style format.

4. A module which would take dances in the internal representation and from them
generate an animation, which would allow people to see the paths traced by the
various dancers as the formations develop.

5. A module which would allow the easy generation of dances, much in the manner
of a painting program. This would be simpli�ed by having an engine for drawing
cribs, such as the Pilling generator in 3 above.

6. A module to allow dances to be found according to various criteria: name (com-
plete or partial match), devisor, �gures occuring, etc. This would require the
dances to be held in a central database of some form.

7. A module to aid the writing of ball programmes. There are guidelines for putting
together such programmes, most of which are common sense. Also a mix of dances
is recommended, with as wide a spread of �gures as is possible. A database such
as described in 6 above would help ensure this.

8. The incorporation of music into the database, and/or musical accompaniment to
the animations.

Many of these require an internal representation, and so the development of a data
structure which could be expanded to cater for most, if not all of the above options was
made a priority. Also some method for getting dances into the computer was needed. 1
and 2 were the only two options which provided this. It was decided to take the route of
1, while ensuring the �le format was comprehensible to humans and so could be written
by them. This had the major advantage of speed: if little attempt was made to model
English prose and the �le format matched the data structures the development of the
compiler would be made much easier.

4, the animation, was chosen as the next path to follow, as this seemed to pose the
most interesting and novel challenges. It also had the bene�t of using the computer to
provide functionality which paper-based media could never hope for. It was felt that it
would also be the most useful avenue for teaching people dancing.

The crib generators and devising module, 3 and 5, were planned as the next stages,
but unfortunately had to be abandoned due to pressure of time.

6

3. The structure of Scottish Country

Dances

This chapter discusses the structure inherent in Scottish Country Dances. After de�ning
the dancing terminology used throughout the report, dances are analysed to determine
their basic make-up. This analysis is used in later chapters when developing a �le format
and data structure.

3.1 Terminology

3.1.1 Orientation terms

A dance starts with the dancers arranged in groups, known as sets. Normally the
members of a set are paired in couples, of which one person is nominally a woman, and
the other is a man. Due to shortages of one sex or the other, \men" may be female or,
less commonly, \women" may be male. From now on I will use \men" to refer to dancers
dancing as men, and \women" or \ladies" to refer to dancers dancing as women.

Where one couple has signi�cantly more work than the others they are referred to
as the leading or dancing couple. If there are two or more couples in this situation they
are referred to as the dancing couples.

Sets are oriented with the top being the section of the perimeter nearest to the music.
There are two common styles of set: longwise sets and sets based on a circle. A

third style sometimes used is round the room. These are described below, together with
terminology peculiar to each.

Longwise sets

Longwise sets are arranged with a row of men facing a row of women. Each person has
their partner directly opposite. People in a row are evenly spaced. The men have their
left shoulders to the music, and hence the top of the set, and the women have their right
shoulders to the music. The couples are numbered consecutively from the top of the set.

The two sidelines are imaginary lines drawn through the correct starting positions
of the women and of the men. These are straight and parallel. The women's side is the
sideline on which the women start, and the men's side is similarly de�ned for the men.
A location in the centre or middle of the set lies on a line parallel to the sidelines, half
way between the two. A dancer is said to be on her own side of the dance if she is on
the same sideline as she started the dance. Correspondingly, she is said to be on the
opposite side of the dance if she is on the other sideline. These are usually shortened to
own side and opposite side respectively. The term wrong side is often incorrectly used
where opposite side is meant.

Positions are described according to who occupied that location at the start of the
dance. So for instance \�rst man's position" is the topmost position on the right hand
sideline as viewed from the top of the set. Also \third woman's position" is the third
nearest starting location on the left hand side, again viewed from the top of the set. If it
is clear from the context where the intended location lies along the line drawn between
the couple the speci�er is usually dropped, giving (eg) \third position". Place is used
interchangeably for position.

In a longwise set up means towards the top of the set, and down or o� means away

7

from the top. The end of the set furthest from the top is naturally enough called the
bottom. Above and below follow as would be expected.

The orientation up and down the set means parallel with the sidelines, and across

the set means at right angles to the sidelines. These are often shortened to up and down

and across respectively.
A common arrangement has the dancing couple back to back in the middle of the set,

with the woman facing the men's side, and the man facing the women's side. The posi-
tions above and below them are occupied by dancers on the sidelines. In this situation
the dancing couple are said to be facing their corners. The person on their right is their
�rst corner, with the person on their left their second corner. Continuing anticlockwise,
some people use the terms third corner and fourth corner to describe their partner's �rst
and second corners respectively. Note that the dancing couple and their �rst corners are
on a diagonal line across the set, and similarly for the dancing couple and their second
corners. This has given rise to the descriptions �rst corner diagonal and second corner

diagonal.
This setup usually occurs with �rst couple as the dancing couple. They are in the

middle of the set in second place. Second couple is above them in �rst place, on their
own sidelines, and third couple are in third place, likewise on their own sidelines. The
�rst and second corners are then people of the opposite sex.

Round the room sets

Such sets have the dancers arranged in two lines facing each other, with each line also
having another set behind them. The sets make a large circle around the room, hence
the name. The progression in such dances consists of the two lines passing to meet the
next line of dancers.

Square, triangular and other polygonal sets

The other sort of set has the dancers arranged around the perimeter of a circle. The men
have their partners on their right, and couples are evenly spaced. For obvious reasons
such sets are called triangular sets if there are three couples on the perimeter, square
sets if there are four couples, and so on. I will generally refer to sets of this type as
circular or polygonal sets.

In some cases a dance has more than four couples in a square set. For �ve and six
couples the extra dancers are generally in the centre of the set. For multiples of four
dancers the dancers are arranged with two, three or more couples on each side of the
square.

The term corner is also used in a circular set. In this case, however, each person
only has one corner. This is the nearest person on the other side from their partner.
So the men have their corners on their left, and the women have their corners on their
right.

3.1.2 Other terms

There are three tempos of dance commonly used: reels, jigs and strathspeys. Reels1 are
in duple time, either 2

4
or 4

4
. Jigs are in 6

8
time. Many dancers make no distinction

between these two, as the steps used are identical for both and it takes a practised ear

1Care must be taken to distinguish between the tempo reel and the �gure of the same name, which

occurs in all tempos.

8

to distinguish the duple beat from the triple. However all dancers can tell the di�erence
between them and the strathspey. This is altogether slower and, theoretically, more
graceful, and uses a di�erent suite of steps. Hornpipes are just reels. When a dance is
composed of sections in di�erent tempos it is called a medley. For instance, the dance
Schiehallion [2] has 64 bars of strathspey followed by 64 bars of reel.

A dance consists of the dancers performing a series of formations, or �gures, which
leave them in a permuted order at the end. The dance is then usually repeated a number
of times until everyone is back in their original positions.

Dances are composed of phrases, usually eight bars long. One bar is the amount
of music needed to complete the basic travelling step of the tempo. In most cases this
corresponds directly to the bars of the music, but in some cases (notably 2

4
reels) one

dancing bar corresponds to two musical bars.
In many cases two dancers will be instructed to pass by the left (or right) shoulder.

In this case they dance past each other so that the other dancer is on the speci�ed side
of them. This means that if they get too close the speci�ed shoulders will collide.

3.2 Structure

In this section the general format of Scottish Country Dances will be discussed in
order to highlight their inherent structure. This information will be useful when devel-
oping a data structure which represents them naturally. The dance \The Millwheel",
described in �gure 3.1, will be used to illustrate this discussion.

As can be seen from the sample dance, the instructions consist of a preamble followed
by a list of bar numbers with associated descriptions.

In the preamble are the details of the dance such as its name, its source, its type, the
intitial set layout and the tunes set. In the example the name is \The Millwheel" and
the source is \Brockbank", showing that it was written by someone called Brockbank.
Its type is given as an \8x32 bar Strathspey". This means it is in Strathspey tempo,
the dance is 32 bars long, and is repeated 8 times in all. The initial set layout is given
as a \Four couple longwise set", and the tune is \Grist to the Mill".

The instructions for the dance then follow. These take the form of a list of in-
structions. Each instruction is preceded by the numbers of the bars during which the
formations should be carried out, followed by a description of the formations.

Consider the �rst formation:

1{8 1st and 3rd couples dance a double �gure of eight, 1st couple crossing
down and 3rd couple casting up to start.

This starts on bar one and �nishes on bar eight. A list of participants is given, fol-
lowed by the formation performed, with some extra information �nishing the description
o�.

It is possible to have more than one formation being performed at a given time, for
instance in bars 25{28.

25{28 1st couple pass �rst corners by the right shoulder and dance round
their position back into the centre, passing their partner by the right
shoulder to face second corners while 1st corners advance into the mid-
dle of the dance, turn once round right hand, and return to place.

This has �rst couple performing one movement|passing �rst corners by the right
shoulder : : : second corners|and at the same time their �rst corners perform another
movement|advance into the middle of the dance : : : to place.

9

The Millwheel
Brockbank

8x32 bar Strathspey
Four couple longwise set

Tune: Grist to the Mill.
Music Description

Bars

1{8 1st and 3rd couples dance a double �gure of eight, 1st couple crossing down and
3rd couple casting up to start.

9{16 1st and 2nd couples dance the knot: turn partner half-way round with the right
hand into allemande hold, curve round and up the lady's side, release right hands
and pass the ladies in front of the men into the centre, and continue turning left
hand. Finish 2nd couple in �rst place, 1st couple in the centre of the dance facing
�rst corners.

17{24 1st couple with 2nd and 3rd couples dance the Millwheel:

1{2 1st lady with 2nd couple and 1st man with 3rd couple dance right hands
across in a wheel half way round.

3{4 2nd and 3rd couples dance left hands across in a wheel half way round while

1st couple chase 1/4 of the way clockwise round the set.

5{6 1st lady with 3rd and 2nd ladies, 1st man with 3rd and 2nd men dance right
hands across in a wheel half way round.

7{8 1st couple turn 1 1/4 by the left hand to face �rst corners.

25{28 1st couple pass �rst corners by the right shoulder and dance round their position
back into the centre, passing their partner by the right shoulder to face second
corners while 1st corners advance into the middle of the dance, turn once round
right hand, and return to place.

29{32 1st couple repeat the movement with their second corners, passing each other by
the right shoulders at the end to �nish in second place on their own sides.

Repeat, having passed a couple.

Figure 3.1: \The Millwheel"|A sample dance illustrating basic dance structure, con-
current motion and recursive de�nition.

10

Formations can even be built up out of simpler formations, as in bars 17{24.

17{24 1st couple with 2nd and 3rd couples dance the Millwheel:

1{2 1st lady with 2nd couple and 1st man with 3rd couple dance right
hands across in a wheel half way round.

3{4 2nd and 3rd couples dance left hands across in a wheel half way
round while 1st couple chase 1/4 of the way clockwise round the
set.

5{6 1st lady with 3rd and 2nd ladies, 1st man with 3rd and 2nd men
dance right hands across in a wheel half way round.

7{8 1st couple turn 1 1/4 by the left hand to face �rst corners.

Here the �gure being danced is called the Millwheel. It is built up from four smaller
groups of movements|a right hands across, a simultaneous left hands across and chase,
another right hands across, and �nally a left hand turn. Note that, with the exception
of the starting details such as who wrote it, or which tunes to play, this de�nition is
almost identical to the description of the dance itself. This suggests that dances have a
heirarchical or recursive nature. In fact one could even go as far as to say a dance is a
�gure which is de�ned in terms of smaller �gures, which may themselves be de�ned in
terms of smaller �gures, and so on.

This suggests that the �gure is the basic unit to consider, rather than the dance,
as may seem at �rst sight more appropriate. Having determined this the structure of
a �gure now needs to be ascertained. As can be seen from the sample, and from the
�gure on bars 17{24, a �gure is composed of a list of sub-�gures.

Consider bars 9{16:

9{16 1st and 2nd couples dance the knot : : : . Finish 2nd couple in �rst
place, 1st couple in the centre of the dance facing �rst corners.

These form one sub-�gure. There is an indication of when the movments occur (bars
9{16), who is involved (1st and second couples) and what they do (dance the knot). In
this case there is also an indication of where the dancers �nish the �gure (Finish 2nd
couple in �rst place, : : : �rst corners).

Who is involved, what they do and where they end up are all lists, of participants,
�gures and (participant,location) pairs respectively.

Since �gures are recursively de�ned there need to be some base cases. The simplest
level which could be taken is to consider these to be just a sequence of curved and
straight-line movements, and express all other �gures in terms of these. However some
movements are so common as to deserve de�nition in their own right. These are the
basic repertoire a dancer needs to know. Examples are crossing, casting, reels, turns
and hands across. It was decided to stop the recursion at this level of de�nition. Such
�gures will be referred to as atomic �gures from now on. The other �gures, which are
de�ned in terms of smaller �gures, will be referred to as composite �gures.

11

4. The �le format|an intuitive

description

This chapter gives an informal description of the language developed for entering dances
for animation. It outlines the various features, and uses a sample dance �le to illustrate
these. The dance chosen for this description is the Duke of Perth, published by the
RSCDS [4]. Figure 4.1 on page 13 gives a possible �le for it in this format.

A dance �le contains several �gure de�nitions. These have three sections, separated
by $ symbols. The �rst section gives the identifying details about the �gure. The second
section deals with the initial con�guration of the dancers, and the third provides a list
of actions, together with their times. A �nal $ symbol terminates the de�nition. The
sections will now be explained in more detail.

4.1 The identifying details

The �rst section, the identifying details, contains the name of the dance or �gure,
optionally followed by a shorthand form to make the descriptions more compact. A
further three items of information relevant to dances may then be added, each preceded
by a \. These are the source or the devisor of the dance, the dance type, and the tunes
set for it. Three �elds must be provided if any are, but the source and tunes �elds may
be empty. The source and tunes are just strings as far as the program is concerned, with
a \ and a $ respectively marking the ends. The dance type is a number indicating how
many times the dance is repeated to bring everyone back to their initial positions, an
x, and another number indicating the number of bars in each repetition of the dance.
This is followed by either R, J, S or H indicating whether the dance is a reel, a jig, a
strathspey or a hornpipe respectively.

The Duke of Perth has the following header:

$ Duke of Perth \ RSCDS I,8 \ 8x32R \

Duke of Perth's Reel $ 4CLS $

This shows it is from RSCDS I, 8 (RSCDS book 1, dance number 8), is an 8x32R:
an eight times through 32 bar reel, and has tune \Duke of Perth's Reel". No shortened
name has been given.

On the other hand, the �gure Corner-Partner has this header:

$ Corner-Partner, CP $ $

It is not a dance in its own right, so does not have the extra details. It has provided
a shorthand name, however: its name is Corner-Partner and its shortened name is CP.
Note that case is not signi�cant; Corner-Partner could be written as CORNER-PARTNER,
corner-partner or even CorNeR-paRtNEr.

4.2 The position section

The second section of a �gure de�nition gives the initial con�guration of the dancers.
This section may be left empty for a sub�gure, but must be speci�ed for �gures which

12

%% Sample file defining the dance Duke of Perth

(from RSCDS book 1, number 8)

-- this is a multi-line comment %%

$ Duke of Perth \ RSCDS I,8 \ 8x32R \

Duke of Perth's Reel $ 4CLS $

1,2: 1C: T(RH); % First couple turn right hand

3,2: 1C: C(1) % First couple cast off one place

3,2: 2C: SU; % while second couple step up

5,4: 1C: T(LH); % First couple turn left hand

9,8: 1C,2C,3C: CP; % dance corner-partner

17,8: 1L,2M,3M & 1M,3L,2L: STC;

25,6: 1L,2M,3M & 1M,3L,2L: R(3,LS,100);

% 1st couple set to and turn corners (8 bars)

% and dance reels of three with their

% corners (6 bars)

31,2: 1C: X(RH);

% Finally, first couple cross over

% a single-line comment

$

% Defining the figures.

$ Corner-Partner, CP $ $

1,2: 1L,2M & 1M,3L: T(RH);

3,2: 1C: T(LH);

5,2: 1L,3M & 1M,2L: T(RH);

7,2: 1C: T(LH);

$

$ Set to and turn corners, STC $ $

1,2: #1,#2: S;

3,2: #1,#2: T(BH); % sets to first and turns

5,2: #1,#3: S; % repeats with second

7,2: #1,#3: T(BH);

$

Figure 4.1: A sample dance �le|\Duke of Perth"

13

may be performed on their own, such as dances. The speci�cation starts with a number
giving the number of dancers. This is followed by one of two forms.

The simplest is a colon, and a position for each dancer, given as x and y coordinates,
followed by an angle in degrees measured anticlockwise from the positive end of the
x-axis, indicating the direction in which the dancer is facing. These coordinates are
given in round brackets. (100,100,270), the position of �rst lady in a longwise set, is
an example. The brackets are used as delimiters.

The other form has a C following the initial number, and then a set-type marker.
This can be either LS, meaning a longwise set, or TS, SQS, HXS or CircularSet, meaning
a set with the couples arranged around the perimeter of a circle. A set with four couples
arranged in a square, with one or two couples in the middle, as in Gavin's Reel (�ve
couple) or The Iona Cross (six couple) is given as a 5cSQS and a 6cSQS respectively.
Dances with several couples on each side of a square, such as The Sixteensome Reel,
with two couples on each side, or eight couples in total, or The Thirtytwosome Reel,
with four couples on each side, are given as 8cSqs and 16cSqs respectively.

Looking back at the Duke of Perth, we �nd it is given as a 4CLS|a four couple
longwise set. The two sub�gures both omit the position, and so start with the dancers
in the positions in which they are left by the previous �gure.

4.3 The de�nition section

The de�nition section takes the form of a series of actions with start time \," duration
\:" a list of participants \:" a �gure, optionally with a list of parameters enclosed in
round brackets, and optionally \:" a list of destinations. The sub�gure is terminated
with a \;".

The starting time and duration are given in bars. The list of destinations is a list
of positions as in the �rst form of the initial con�guration as described above. The
participants in the list are separated by either commas or & characters. This allows the
devisor to split them up into logical blocks. The participants are either a # sign followed
by a number, so #3 is the third dancer speci�ed when the �gure was called, or a number
followed by L or W meaning woman, M meaning man or C meaning couple. In fact the
second form is translated into the �rst: 1L is translated to #1, 1M to #2, 2L to #3, and
so on. 1C is translated to 1L,1M which itself translates to #1,#2, and similarly for the
other couples.

Taking the Duke of Perth example again, we have:

25,6: 1L,2M,3M & 1M,3L,2L: R(3,LS,100);

This �gure starts on bar 25 and lasts for 6 bars. The dancers are �rst woman
with second and third men in one group, and �rst man with third and second women
in another group. The �gure, R(3,LS,100), will be described below. There are no
�nishing positions given.

In set and turn corners, we have

3,2: #1,#2: T(BH); % sets to first and turns

This sub�gure starts on bar three relative to the start of the �gure, and last for two
bars. So if the �gure STC started on bar 9, this sub�gure would occur on bars 11 and 12.
The dancers are numbers one and two. Referring to the �gure for the Duke of Perth,
we see

14

17,8: 1L,2M,3M & 1M,3L,2L: STC;

This �gure is therefore called with dancers 1L,2M,3M and 1M,3L,2L. On bars 19 and
20, corresponding to the line from the de�nition of STC, the dancers are �rst woman
and second man, and �rst man and third woman. This also illustatrates that order is
important when specifying dancers.

A �gure is speci�ed by either the name or the short name of either a de�ned �gure
or a built in atomic �gure. This may be followed by a list of parameters separated by
commas and with the whole list enclosed in round brackets.

The parameters may be either numbers or one of the following special parameters:

LH, RH and BH: These signify left hand, right hand and both hands respectively. These
parameters are used in turns, for example.

LS and RS: These, used in reels and when two people pass, indicate left or right shoul-
der.

PH and AH: These signify promenade and allemande hold respectively.

NH: This is used to show no hands should be given when crossing, for instance.

NR or NRH This shows the dancers give nearer hands, in a lead down the middle and
back, for instance.

X and C plus U, D or O: These signify a cross or a cast to start (eg) a �gure of eight.
Followed by U means \up" while a D or an O means \down".

In the de�nition of the Duke of Perth, we have

17,8: 1L,2M,3M & 1M,3L,2L: STC;

25,6: 1L,2M,3M & 1M,3L,2L: R(3,LS,100);

The �rst �gure is STC, the set and turn corners �gure de�ned later in the �le. This
has no parameters. The second �gure is R(3,LS,100). This is a reel. Looking at the
speci�cation of the reel (which is an atomic �gure) the parameters show it is a reel of
three, starting with the dancing person giving left shoulder, and is a full reel, 100%.

Note that a �gure may be referred to before it has been de�ned, as in the sample
�le with the CP and STC �gures. As a result of the mechanism for this the program will
also accept references to unde�ned �gures. When the dance is animated such �gures are
ignored.

4.4 Comments

Notice the comment forms used throughout. There are two types: a single line comment,
started using % and running to the end of the line, and a comment which can span
multiple lines and is started and �nished by %%. Comments can start at any point on a
line or within the �le. They can even occur in the middle of tokens. Both types appear
in the sample �le.

The layout of the �le is also unimportant. The sample �le has been laid out with
one sub�gure to a line, but this is not necessary. Several sub�gures may be given on
one line, or a sub�gure may be split over several lines, or whatever.

15

5. The �le format|formal de�nition

This chapter gives the syntax and intended semantics of the �le format in a rigorous
fashion. The complete syntax is given in BNF, and then the semantics of each syntactical
element is described in detail.

5.1 The syntax

The syntax is given in a slightly extended version of Backus-Naur form. Non-terminal
tokens are indicated as follows: token, and terminal tokens as here: `token'. A de�ni-
tion is of the form non-terminal! token-list. Where one non-terminal token has several
possible derivations they are indicated by derivation1 j derivation2 j : : : . All terminal
tokens are case-insensitive. Where there are several mutually-exclusive single-character
tokens these are indicated using [`token-list']. Here the token-list contains single charac-
ters and/or ranges of characters marked by start{�nish. If it starts with ^ all characters
are valid except those listed. nn, nr and nt are used for the new-line, carriage-return and
tab characters, following the C convention. So for instance the digits are represented by
[`0-9'], and everything except a new-line and a tab would be represented by [`^nnnt'].
The end-of-�le character is represented by `<EOF>', and the symbol " is used to represent
the empty token. The shorthand (tokens)? will be used to denote zero or one occurences
of the token or bracketed group of tokens. Similarly (tokens)* will be used to denote
zero or more ocurrences, and (tokens)+ to denote one or more occurrences.

5.2 The semantics

This section takes each syntactical element in turn and outlines the intended meaning.
All angles used in this section will be expressed in degrees, as is used in the �les.

This particularly applies to f coordinates.

5.2.1 Terminal characters

alpha ! [`A-Z'] (1)

digit ! [`0-9'] (2)

punctuation ! [`,.;:"?!'] (3)

wschar ! [` ntnnnr'] (4)
The terminal characters from which lexical elements are built up fall into four cat-

egories: letters (1), digits (2), punctuation (3) and whitespace characters|space, new-
line, carriage return and tab. Note that letters are case insensitive: \c" and \C" are
equivalent at all times.

5.2.2 Comments

comment ! line-comment j block-comment j " (1)

line-comment ! `%' ([`^%nn'] ([`^nnnr'])*)? (2)

16

block-comment ! `%%' ([`^[`%%']'])* `%%' (3)
There are two sorts of comment: single-line comments and multi-line comments.
Single-line comments (2) start with a single `%' character and continue until the next

newline or carriage return character. They may start at any point on a line. The only
restriction is that the character immediately following the starting `%' may not also be
a `%'.

Multi-line comments (3) start and �nish with two `%' characters side by side. These
`%'s may not be separated by anything, not even spaces and newlines. The comments
may span as many lines as required, or take up less than a line. They may be started at
any point on a line. For obvious reasons they may not contain two `%' characters side
by side.

5.2.3 Whitespace

ws-opt ! (wschar j comment)* (1)

ws ! wschar ws-opt (2)

wschar ! [` ntnnnr'] (3)
Whitespace includes space, tab, newline and carriage return characters. Comments

do not count as whitespace for the sake of spacing, but are treated in the same way
where whitespace is optional. Whitespace may be inserted between tokens. It is used
as a token delimiter in only a very small number of cases.

5.2.4 Terminal strings

punctuation-string ! (space-string j punctuation)* (1)

space-string ! (string j wschar)* (2)

string ! alpha (string-char)* (3)

string-char ! alpha j digit j ` ' (4)
A string starts with a letter, and can contain letters, numbers and the underscore

character ` '. Some lexemes have delimiters built in and can accept strings containing
whitespace. Such strings start at the �rst string character (4) and continue until the last
string character before the delimiter. They may contain string characters and whites-
pace. Such strings are used for dance names, for instance. A third type of string used
may contain punctuation, as well as all the characters allowed in a space-string. These
may start with any string or punctuation character and are terminated analogously to
space-strings.

5.2.5 Numbers

oat ! (signed-number)? (`.')? number

j signed-number (1)

signed-number ! (`-')? number (2)

number ! (digit)+ (3)
Numbers are exactly what would be expected: a series of digits in decimal. They may

be preceded by a negative sign, and can be either integral or
oating point. Floating

17

point numbers consist of an optional negative sign, followed by zero or more digits,
followed by a full stop to signify the decimal point, followed by zero or more further
digits giving the fractional part. If the part preceding the decimal point is missed out
it is taken to be zero. Integral numbers ((2) and (3)) may be given in place of
oating
point numbers but not the other way round.

5.2.6 The �le and �gure de�nitions

dance-�le ! (�gure-de�nition)* `<EOF>' (1)

�gure-de�nition ! `$' �gure-names (dance-details)? `$' start-setup `$' (�gure)* `$'
(2)

dance-details ! `n' (source)? `n' type (`+' type)* `n' (tunes)? (3)

source ! punctuation-string (4)

type ! number `X' number [`RJSH'] (5)

tunes ! punctuation-string (6)
A �le (1) contains a series of zero or more �gure de�nitions (2), with the end-of-

�le character marking the end of the �le. These de�nitions start with a `$' character,
followed by the names of the �gure as described in section 5.2.7. The dance details
then follow as described below. Note that these are optional as they only make sense
for a �gure which is also a complete dance. Another `$' character is followed the initial
con�guration as described in section 5.2.8 and then yet another `$' character. The
description of the component �gures (section 5.2.11) is followed by a �nal `$'.

If the extra details are given they consist of the source, dance type and tunes, each
preceded by a `n'. The only detail which must be provided (if any are provided) is the
type.

The source is either who devised the dance or where it was found. This can be a
punctuation-string as described in section 5.2.4, or empty.

The dance type consists of a number indicating how many times the dance is re-
peated, an `X', and `R', `J', `S' or `H' signifying a reel, jig, strathspey or hornpipe re-
spectively. For a medley this may be followed by a `+' and another type. This may be
continued up to 10 times.

5.2.7 Naming �gures

�gure-names ! �gure-name (`,' short-name)? (1)

�gure-name ! space-string (2)

short-name ! space-string (3)
Since a �gure name is delimited by a `$' and either a `n' or another `$' (5.2.6, 5.2.6)

the string used for its name can contain spaces. The person writing the dance may also
specify a shortened form, separating the two with a comma. The �gure name may be
up to 50 characters long, and the shortened form up to 10.

18

5.2.8 The initial con�guration of the dancers

start-setup ! number-participants `:' (position)*
j digit `C' set-type (1)

number-participants ! number (2)
The initial con�guration of the dancers is given in either of two forms:

1. A number of dancers, followed by a colon, followed by a list of starting positions
(section 5.2.10). Care must be taken to ensure that the number of positions
speci�ed corresponds to the number of dancers stated.

2. A standard set type. This is given by a number of couples followed by a `C',
followed by a type of set, as described in section 5.2.9.

5.2.9 The sets

set-type ! longwise-set j square-set (1)

longwise-set ! `LS' j `LongwiseSet' (2)

square-set ! `TS' j `TriangularSet' j `SQ' j `SQS' j `SquareSet' j `HX' j `HXS' j
`HexagonalSet' j `CircularSet' (3)

The standard sets are either longwise or circular. Longwise sets are indicated by
`LongwiseSet', or `LS' for short. Remember that the parser makes no case distinctions,
and hence `lonGWiSeSEt' (for example) is equally valid.

Circular sets may be indicated in several ways, re
ecting the di�erent shapes such
sets form. Three couples in a circle form a triangle, four form a square and six
form a hexagon. These are the most commonly used such formations. Accordingly
`TriangularSet' (or `TS'), `SquareSet' (or `SQ' or `SQS') or `HexagonalSet' (or `HX' or
`HXS') may be used. The generic term `CircularSet' may also be used. Note that, with
the exceptions outlined below, the program makes no distinction between any of these,
so a `7CTriangularSet', a `7CHexagonalSet' and a `7CCircularSet' all result in seven
couples evenly spaced around the perimeter of a circle.

The exception is the SquareSet. There are various forms of square sets for more
than four couples, and the program will try to re
ect this. A `5CSquareSet' or a
`6CSquareSet' will produce a square set with the extra couple(s) in the centre, as in,
for instance, Gavin's Reel [2]. A square set with a multiple of four couples, will have the
couples arranged equally along four sides. So an `8CSquareSet' as in the Sixteensome
Reel would have two couples on each side, a `12CSquareSet' would have three couples
on each side, and so on.

Note that these terms contain no spaces.
In actual fact only the �rst three letters of the set type are signi�cant, and so any

truncation to three letters or longer is accepted.

5.2.10 Positions

position ! relative-position j absolute-position (1)

relative-position ! `#' dancer absolute-position j `@' dancer absolute-position (2)

19

absolute-position ! `(' signed-number (`,' signed-number (`,' signed-number)?)? `)'
(3)

Positions may be relative or absolute.
An absolute position is enclosed in round brackets `(' and `)'. The devisor may give

only the x-coordinate, the x- and y-coordinates or all three coordinates, with the f -
coordinate as well. Coordinates are signed numbers (section 5.2.5) separated by commas
and, optionally, whitespace. Unspeci�ed coordinates are taken to be 0. So `(100,0,0)',
`(100,0)' and `(100)' are identical.

Relative positions have exactly the same syntax as absolute positions, with the addi-
tion of either a `#' or an `@' symbol and a dancer (section 5.2.14) at the front, optionally
separated from the absolute component with whitespace.

The `#' forms are evaluated by adding the absolute coordinates to the coordinates
of the location of the given dancer at the time of evaluation, while the `@' forms are
calculated with respect to the dancer's original position. So if second man in a longwise
set is at location (250; 0; 0), `#2M(-50,50)' gives (200; 50; 0). `@2M(-50,50)', on the
other hand, gives (150;�50; 90), since second man started the dance in second man's
place (surprisingly enough)|(200;�100; 90).

5.2.11 The component �gures

�gure ! start `,' duration `:' dancers ([`,&'] dancers)* `:' sub�gure `:'
(relative-position)* `;' (1)

sub�gure ! �gure-name (`(' parameter ([` ,'] parameter)* `)')?
j repeat (2)

The component �gures which make up a dance consist of an indication of when
they occur, followed by a list of dancers and a �gure. A list of �nishing positions may
optionally be appended. The various sections are separated by colons, and may also be
surrounded by whitespace.

The time indication gives a starting bar and a duration in bars, separated by a
comma. The list of dancers is described in section 5.2.14.

The description of the �gure consists of a �gure name, either the full or the short-
ened version, optionally followed by parameters to the �gure (section 5.2.12) in round
brackets. Alternatively a repeat may be speci�ed, as described in section 5.2.13. Note
that a �gure may be referred to before it has been de�ned, and it is even possible to
include �gures which are not de�ned. Unde�ned �gures are treated as composite �gures
with no sub�gures in animations, and hence have no e�ect.

The optional position list is a list of relative positions as described in section 5.2.10,
optionally separated by whitespace, although since positions are terminated by a closing
brace this is not necessary. It gives the positions of the dancers involved in the �gure
when the �gure �nishes. The �rst position corresponds to the �rst dancer, the second to
the second, and so on. It is not necessary to specify a �nal position for all the dancers.

5.2.12 Figure parameters

parameter ! number j `L' j `R' j `B' j `LH' j `RH' j `BH' j `LS' j `RS' j `P' j `A' j `PH' j `AH'
j `N' j `NH' j `NHL' j `NHR' j `NR' jNRH j `XU' j `XD' j `CU' j `CD' j `CO' (1)

The parameters to a �gure are enclosed in round backets (section 5.2.11). They are
given as a comma-separated list.

A parameter may be either a number (section 5.2.5) or one of the strings below:

20

`L', `R' and `B' These signify left, right and both respectively. They are most commonly
used to represent the hands given in a turn, and may be followed by an `H' in
recognition of this. They are also sometimes used to represent the nearer shoulders
of two dancers passing, and may be followed by an S to show this. Note that RH
and RS are not equivalent, although some �gures do treat them so.

`P' and `A' These signify promenade and allemande hold respectively, and may be fol-
lowed by an H.

`N' This signi�es none when followed by an H or alone, and nearer when followed by an
R (see below). It is used to specify that the dancers should not give hands when
crossing over, for instance. It may be followed by an H and a R or an L to show
that the dancers should pass by the right or left shoulder respectively.

NR This signi�es nearer, as in nearer hands. It may be followed by an H. It is used to
show that the dancers should give nearer hands in a lead down the middle and
back, for instance.

`X' and `C' + `U', `D' or `O' These represent crossing or casting. The second letter
speci�es whether it is up (`U') or down, also referred to as o� for a cast (`D', `O').
These are used in �gures of eight to specify how the dancers should start the �gure.

5.2.13 Repeats

repeat ! `RPT' j `REPEAT' (1)
A repeat starts with one of the repeat markers `REPEAT' or, more succinctly, `RPT'.

It indicates that the �gure to be performed is the same as that given in the previous
�gure. Note that here previous �gure means previous in the �le and not in time.

5.2.14 List of dancers

dancers ! number `C' j dancer (1)

dancer ! number [`MLW'] j `#' number (2)
A list of dancers may be separated by commas and/or ampersands. This is to allow

the devisor to highlight their grouping. The program makes no distinction between the
two separators.

A dancer is given by either a number, followed by `M', signifying a man, `W' or `L',
signifying a woman, or `C', sigifying a couple. Alternatively she may be speci�ed using
the form `#' followed by a number. This means the dancer with the same internal
number as that given, starting at 1. In fact `1L' is expanded internally to `#1', `1M' to
`#2', `2L' to `#3', and so on. `1C' is expanded to `1M,1L' which is expanded to `#1,#2',
and similarly for the other couples. Note that the dancer speci�ed as part of a relative
position (section 5.2.10) may not be a couple.

21

6. Features of C++

6.1 The basics

C++ was described by its principal designer, Bjarne Stroustrup of AT&T Bell Labora-
tories, as \C with classes" [26]. The aim was to provide object-oriented extensions to
C, without losing any of the functionality provided by C. The compiler used, Borland
C++ version 4.0, fully implements AT&T's C++ version 3.0 [18].

Object-orientation is a hotly disputed term. Wegner [27, summarised in [26]] de-
scribes three classes of languages. Object-based languages provide for data abstraction
and access to an object's \state" through its own operators. Class-based languages re-
�ne this class by adding abstract data types, where objects belong to classes|their
abstract data types. A class is more a template for an object than a strict type. The
class' template may be copied, and perhaps be modi�ed when copied. This leads to the
addition of the third and smallest set of languages, the object-oriented languages. These
add inheritance to the properties of the other sets. Inheritance allows one class to be
de�ned in terms of another, with the \child' class inheriting most of the properties of
the \parent" class.

C++ extends the syntax of the struct construct in C, and adds a new class

construct, to provide these \class templates". There is little material di�erence between
the two, so I shall use \class" for both throughout. A class can be declared to have
data associated with it, as with a struct. It can also have member functions de�ned to
act on the data in the class.

An important part of C++, and one which can save a lot of work re-inventing the
wheel, is that of inheritance. A class can be declared as inheriting properties from one
or more parent classes. It then has all member functions and all data members of the
parent classes, with the same functionality as before, except those which are speci�cally
over-ridden in the de�nition of the new class. These properties can then be extended
with further properties. This allows a family of objects to be de�ned which have some
properties in common and some unique to the child classes. An item of the child class
type is also an item of the parent class type, although the converse is not necessarily
true. Parent classes may not have members with the same name. The exception to this
is where all but one of the con
icting classes are marked as virtual in the inheritance
list. In this case the non-virtual class has precedence.

All classes have at least one constructor and a destructor. These are functions called
when an instance of a class is created, and when it is destroyed. They have the same
name as the class, preceded by a ~ in the case of the destructor, and have no return
value. The constructors may take parameters, but the destructor may not. If either is
not provided the compiler provides a default one. Constructors and destructors are not
inherited, but the constructor of a parent class may be called before entering the body
of a child constructor.

Polymorphism allows a child to rede�ne a member function so that whenever that
function is called of a member of the child class, the appropriate version of the function
is called, even if the function is called from a pointer of type pointer-to-base-class. Such
functions are marked by the keyword virtual preceding the function declarations of all
the classes.

Member functions and data items may be marked as public, protected or private.
Public declarations are available to all objects, and even to global statements. Protected

22

declarations are available to all instances of that class and derived classes and to func-
tions which have been speci�cally declared as friend functions, but not to anything
else. Private declarations are only available to instances of that class and to friend
functions, not to derived classes. This mechanism provies the data-hiding features. The
standard practice is to make all data items either protected or private, and to provide
access functions to set and query these data items. This means the object has complete
control over alterations to its data.

The classic example is a set of graphics items, a circle and a rectangle, for instance.
These all have certain properties in common, such as their position on screen, and other
properties speci�c to each, such as the radius for the circle, or the lengths of the sides
for the rectangle. They also share a virtual function Draw which draws the object on
screen. These might share a base class GraphObj declared as follows.

class GraphObj

{

public:

GraphObj();

~GraphObj();

void SetLocation(POINT p);

POINT GetLocation();

virtual void Draw();

protected:

POINT location;

};

The functions in GraphObj would have a later de�nition of the form

void GraphObj::Draw()

{

:

function body

:

}

From this class de�nition we might have classes Circle and Rectangle based on it
as follows:

class Circle : public GraphObj

{

public:

Circle();

Circle(int radius);

~Circle();

void SetRadius(int r = 1);

int GetRadius();

virtual void Draw();

protected:

23

int radius;

};

class Rectangle : public GraphObj

{

public:

Rectangle();

~Rectangle();

void SetSize(POINT);

POINT GetSize();

virtual void Draw();

protected:

POINT size;

};

Note that both Circle and Rectangle also have the public member functions
SetLocation and GetLocation, and the protected data item location, inherited
from GraphObj. If location had been private instead of protected then Circle

and Rectangle would not have had access to it.
Member functions are called using the usual C structure de-reference operators \."

and \->". As well as the speci�ed parameters, a hidden \this" parameter, a pointer
to the instantiation of the class, is passed to allow the function to know which item is
being acted upon. So, if an object C of type Circle had been created, it would be drawn
using the command C.Draw();. If P was of type GraphObj*, then the commands P =

&C; P->Draw(); would have exactly the same e�ect; the Draw function called would be
that corresponding to the actual item, the Circle, and not to the type of the pointer,
a GraphObj.

6.2 Overloading

In C++ functions may be overloaded. This means di�erent functions with the same
names may be de�ned, as long as the types of their parameters are di�erent. So, for
instance, in C the programmer might have written

int greater_than_int(int a, int b);

float greater_than_float(float a, float b);

In C++ she could use the same function name, and the compiler would select the
correct version for the parameters passed. In particular, the standard operators, +, ==
and so on, may be overloaded for a new class. So instead of writing a function int

IsEqual(Class1 &C1, Class1 &C2); the programmer could de�ne a member function
int operator ==(Class1 &Other); and then the much more intuitive syntax C1 ==

C2; could be used to test for equality, for example.

6.3 Templates

The template features of C++ can save writing a lot of very similar code. E�ectively
they allow compile-time parameters as well as run-time parameters to functions and

24

declarations. Their power lies in the fact that these parameters can be any constant,
including types. The classic example, as described by Borland [18], is a function which
compares two items and returns the greater. In C this might be

int max(int a, int b)

{

return (a > b) ? a : b;

}

This is �ne if all you want to compare are integers. However if doubles were to be
compared another function would have to be written which di�ered in only the types
declared:

double max(double a, double b)

{

return (a > b) ? a : b;

}

And then if a struct had been de�ned

struct tagPOINT

{

int x,y;

} POINT;

and these were to be compared? This is where templates come in. The following
de�nition is completely general purpose, taking the type as a parameter.

template<class T> T max(T a, T b)

{

return (a > b) ? a : b;

}

This even covers the struct, assuming the programmer has overloaded the > operator
(see section 6.2). The structure de�nition would then become as follows, and the function
max<POINT> would compare two POINTs, and return the greater.

class POINT

{

int x,y;

int operator >(POINT &Other)

{

int result;

// some code making your comparison here

return result;

}

};

Templates have been used to de�ne a generic dynamic array of objects, accessible by
their index. Object were sorted by order of insertion|ie additions were made in space
at the high end of the array. If the array was full it was extended to provide more space.

25

These dynamic arrays were used to store lists of �gure details in the various data
structures (see chapter 8). Initially only two di�erent versions of these lists were used:
one of dancer indices (int) and one of parameters. During the course of the project
other lists were found to be needed: of locations (struct Location), and pointers to
dancers (struct Dancer*). Having the template list made it the work of a moment to
add types to handle these lists.

6.4 Advantages and disadvantages of C++

C++ was a natural language for expressing the problem, as it involves various objects
with various properties interacting, and this lends itself to an object-oriented approach.
The language also allows for hierarchies of related objects, each inheriting the properties
of object above them in the hierarchy, and becoming more specialised as the hierarchy
is traversed.

There were a few problem encountered, however. The �rst was that the resolution
mechanisms for polymorphic functions are not set up when a parent class constructor
is called from a child constructor. This is described in more detail, together with the
work-around used, in section 8.3.2.

Another problem which is a common gripe with MS-Windows and C++ is that MS-
Windows cannot pass the hidden this parameter to class member functions, and so
callbacks which are member functions must be static members. This is described in
more detail in section 8.3.1.

A further problem occured when using virtual functions which called the versions
of the functions de�ned in parent classes. Since this takes the form of a function call it
is not possible for the parent function to do both setting up and cleaning up.

This problem arose when allowing �gures to act upon di�erent Sets. An optional Set
parameter was added to the Evaluate function (see section 8.1). The simple approach
would be to have the pointers inside the Figure class made to point to the passed-in
Set if non-null, at the start of the function, and to point back again to the original Set
at the end of the function. This would be �ne, only it would be nice for the functions in
child classes to be still able to access the relevant Set after calling the parent function.
By that time the parent function has �nished, so everything has been reset.

This problem was solved by having a data member in the parent class of type Set*.
If a Set was passed in, this pointer was assigned to point to it. Otherwise the pointer
was made to point to the original Set of the Figure. Since this pointer was inherited
by all derived classes, they could do all their Set access through it and always get the
right Set. There would be no tidying up needed, as a pointer to the original Set was
also held, and so it could always be accessed through that.

26

7. The operating and programming

environments

Microsoft's Windows 3.1 was chosen as the operating environment. This was because I
already had experience with writing programs for it, and it was the environment installed
on my computer. It is also more likely that other dancers would have a PC-compatible
running under MS-Windows than a Sun workstation running under X-Windows.

Note that people argue whether MS-Windows is actually an operating system or not.
Those who argue that it is not point out that it does not itself provide some essential
facilities such as �le-handling, but instead passes them on to the underlying MS-DOS
operating system. For simplicity in the following discussion I will consider it to be
combined with MS-DOS to form a windowing operating system.

7.1 MS-Windows programming

MS-Windows programming is event-driven. The program is noti�ed of events by a
message from the MS-Windows kernel. Examples of such events are a key-press, a
mouse button click or a menu item being selected. The program then acts on these
events (or not) and returns control to the operating environment and the user. The
next section will expand on how this works.

This explanation is based on the books by Petzold [21] and Schulman, Maxey and
Pietrek [22]. Please refer to these for further details.

7.1.1 The structure of an MS-Windows program

A windows program has at least two functions. The WinMain function roughly corre-
sponds to the main function in a standard C program in that it is the �rst function called
when a program is run. This function is used for initialisation. A WNDCLASS structure
is set up with the details of the program's main window, and this is registered with the
operating system. Details in this structure include handles (e�ectively pointers) to an
icon, a mouse cursor and a menu structure. Also the name of the program as a char*,

ags indicating whether repaint messages should be sent when the window is resized
and, most important of all, the address of the WndProc function.

Having registered the window class a window of this class is then created to become
the application's main window. Once this window has been displayed the function goes
into a message loop. In its simplest form this looks like �gure 7.1. The operating system
is polled for outstanding messages from events. The GetMessage function returns 0 if
the program has been terminated, thus �nishing the while loop. Otherwise the MSG

while (GetMessage (&msg, NULL, 0, 0))

{

TranslateMessage (&msg);

DispatchMessage (&msg);

}

Figure 7.1: A simple MS-Windows message loop.

27

structure msg will contain details of the appropriate event. The TranslateMessage call
takes this message and converts keypress messages into the corresponding character mes-
sages for the keyboard the system has been told is in use. Finally, the DispatchMessage
function call gets the message sent to the appropriate window function.

So what is this window function? It is the function whose address was given to
MS-Windows in the WNDCLASS structure when the window class was registered. Since it
has a set format, the MS-Windows kernel can call it with *(wndclass.lpfnWndProc)

(<parameters>);. These parameters are

hwnd The handle of the window, passed back to MS-Windows as a parameter to many
system calls.

message The message, encoded as a WORD, or 16 bit unsigned integer. The windows.h header
�le de�nes symbolic constants for these. For instance WM VSCROLL is de�ned to be
0x0115, and WM SIZE is de�ned to 0x0005.

wParam A 16 bit parameter to the message. This usually quali�es the message. For example
in WM VSCROLL it tells the program whether to scroll the display up or down by
either a line or a page, or to take the position from the scroll bar thumb, which is
passed in in the next and �nal parameter.

lParam A 32 bit parameter usually used to pass data to the function. For example in
WM VSCROLL, when wParam holds SB THUMBPOSITION, lParam holds the appropriate
value in its lower 16 bits. Note that since pointers are also 32 bit this could be a
pointer to a much larger data structure.

The standard form for a WndProc procedure is a large switch statement with the
message values as guards. For a complex program this can become extremely unwieldy
and doubtfully eÆcient. Several vendors have taken advantage of the modularity and
the message-passing to develop C++ libraries which encapsulate this functionality and
increase the eÆciency. One, the Borland ObjectWindows library used in the development
of this program, is discussed in section 7.2.

7.1.2 Callbacks

There is another way for MS-Windows to pass a message to a program. This involves
the program giving the address of a function which is to be called whenever a certain
event occurs. Then when the event does occur, instead of putting a message in the
program's message queue the kernel calls that function with set parameters, just as
happens with the window procedure functions. The WndProc and similar functions are
in fact functions of this type. Such functions are called callbacks, and have to expect the
documented parameters. Giving the kernel the address of a callback function is referred
to as installing a callback.

Callbacks have a range of uses. A timer callback was used in this project to provide
real-time control of the animation. Other examples are window and dialog procedures
(such as WndProc), functions called by MS-Windows functions which enumerate through
a set of items and service routines which replace some of the functions provided. However
it is not possible to install callbacks for arbitrary events.

7.1.3 Multitasking

MS-Windows uses non pre-emptive or cooperative multitasking. A program relinguishes
control when it polls its message queue using the GetMessage and related functions. If

28

there are only WM PAINT and WM TIMER messages in the program's message queue when it
calls GetMessage, MS-Windows will switch to another program which does have pending
messages, and only return to the program once all other programs have been serviced.
This means that GetMessage may take a long time to return. It also means programs
must be written to relinguish control every few milliseconds even if they are in the middle
of some long calculations, as otherwise the system will appear to come to a grinding
halt.

7.2 The Borland ObjectWindows library

As part of their C++ compiler package, Borland International provide a set of C++
class libraries collectively named ObjectWindows. These originally appeared as an add-
on to version 3.0 of their compiler, and have been extensively revised and expanded in
version 2.0 of the libraries as currently packaged with version 4.0 of the compiler. The
following discussion is based on the accompanying instruction manuals [19, 20].

The purpose of the ObjectWindows libraries is to encapsulate the functionality of an
MS-Windows program. Classes provided include:

1. An application class, TApplication. This provides the program initialisation, and
holds the main message loop. It also handles the dispatching of messages to the
classes corresponding to the appropriate MS-Windows elements. The programmer
derives a class from this which overrides the default actions where necessary. In
particular the MainWindow is set to a class derived from the base TFrameWindow

which has the particular functionality she wants.

2. Window classes, TWindow and TFrameWindow. In MS-Windows everything is re-
garded as a window [21]. ObjectWindows mimics this by having a class derived
from TWindow [19]. TFrameWindow is used for the interface elements usually called
windows. The programmer derives a class from TWindow to act as the drawable
area and makes it a child window of either a TFrameWindow or a derived class.

3. Menu classes. These provide a wrapper for the various types of menu|pull-down,
both user and system de�ned, and pop-up. These classes are usually used without
modi�cation.

4. Dialog boxes. These are windows used to inform the user and to get information
from her. They commonly have child windows which act as text entry boxes,
buttons, list selection boxes and so on, generically referred to as controls. See 5 for
more on these. Dialog boxes may be application modal, in which case the program
is halted until the box is closed, but the user may switch to other programs, system
modal, where the user cannot even switch to a di�erent program, or modeless,
where the program may also be accessed. These last tend to be tool palettes and
the like.

5. Control objects. As mentioned in 4 these are commonly used to pass information
between the user and the program in dialog boxes. They may also appear on
standard windows. They include:

� Buttons. These are usually used to trigger a change in program state.

� Text boxes, both static and for user entry.

� Check boxes, for selecting and deselecting options, and radio buttons for
choosing between a group of related options.

29

� List boxes and combo boxes. These provide lists of options to the user.
Combo boxes combine a text entry box with a list box, allowing the user to
type the selection in.

� Scroll bars. These allow the user to specify a point on a range.

6. Printers. These provide a wrapper for the printing interface.

7. Graphics objects. These are simply the graphics objects provided by MS-Windows,
re-expressed as C++ objects. They include

� Device Contexts. These control access to display areas, whether screen, mem-
ory, printer, or whatever. They also store the state of the given display area.

� Pens and Brushes. Pens are used to control how lines are displayed, and
brushes specify the pattern used when areas are �lled.

� Fonts.

� Palettes. These control the mapping of colour indices to colours in the display.

� Bitmaps and DIBs. DIBs are Device Independent Bitmaps. These are self-
explanatory.

� Regions. These are commonly used for restricting display operations.

� Icons. These are special bitmaps mainly used to represent programs.

� Cursors. These vary the shape used for the mouse.

The ObjectWindows library is more time-eÆcient than a switch statement, as it
sets up a table of messages and handler functions. When a message is received this
table can be interrogated, using the message value as a hash value, and the address of
the relevant function retrieved. This reduces what is e�ectively a linear look-up (if
: : : then : : : else if : : : then else : : :) in the number of messages handled to a
constant overhead from the hashing. On the down side it does require space to store
the message table.

30

8. The data structures

This chapter discusses the various data structures developed in the course of the project.
The purpose and main features of each are outlined.

The �rst section looks at the central group of data structures, the Figure classes.
These are used throughout all the modules. The supporting classes needed for the
animation are then detailed in the following sections.

Throughout this discussion I will use the term \class" solely to mean the C++
datatype, and use synonyms where the meaning \set" or \group" is intended.

8.1 It �gures.

The central construct of a Scottish Country Dance was argued in section 3.2 to be the
�gure. The main category of data structures developed was therefore intended to provide
a representation of this. There was more than one such data structure because di�erent
structures were appropriate for di�erent purposes. All the structures had some elements
in common, with some having more in common than others. This suggested building a
heirarchy of classes, with the common properties built into the base classes. The other
classes would then inherit these properties and re�ne them, or add new properties. In
this way an acyclic graph of classes is built up. Figure 8.1 shows the hierarchy developed.

8.1.1 The central properties

The properties central to all �gures include their name, starting and �nishing times and
duration. Obviously only two of the three times need to be stored, since the third can
be calculated from the other two: end = start + duration. It was decided to store
the start time and the duration, and to calculate the end time when it was required.

Other central properties associate the Figure with lists of dancers, parameters, and
starting and ending locations. These are all based on the dynamic array template class
described in section 6.3. The dancer list gives indices into the central array of dancers,
described in section 8.3.2. The parameters are ints, with symbolic parameters, such
as the hand used in a turn, encoded as prede�ned constants. The starting and ending
locations are not necessary; they allow these to be speci�ed where they do not follow
automatically from the �gure calculations.

An equality operator is de�ned which compares the names of the two �gures and
returns TRUE (1) if they are the same. Another property tests whether the �gure is
atomic, ie whether the name matches one of the prede�ned �gures. If it is atomic then
a �nal property returns a unique identi�er for that atomic �gure. Composite �gures are
all assigned the composite identi�er. This allows the animation routines to indentify
the �gure quickly without the need for a string matching.

The class FigureInfo encapsulates all of these. There are three branches of subclass
derived from it. These provide a class for holding descriptions of �gures in a central
look-up table, a class to do the same job for �gures being animated, and classes to
provide the animation routines.

8.1.2 The sub�gure description classes

These two classes provide a description of a sub�gure of a main �gure. They provide
the details given above in section 8.1.1, and also hold pointers to fuller descriptions of

31

FigureBaseFigureRecordFigureNodeChild

Cross

MoveTo CurveToCast

Move Curve CircleCoupleFigure Wheel

FigureEight

Reel

Turn

AtomicFigure PhrasedFigure

AllemandePousettePromenade

FigureInfo

CompositeFigure

Figure 8.1: The Figure hierarchy.

the �gure. FigureNodeChild provides this functionality for the entries in the central
table of de�nitions, and FigureRecord does its job for the animated composite �gures.
They both provide a <= operator. The main di�erence between the two classes is that
FigureNodeChild is sorted by its name, whereas FigureRecord is sorted by starting
time. It is possible that the two classes could have been combined, but by the time this
was realised it was felt more e�ort would be expended than the gains justi�ed.

8.1.3 The animation Figure classes

These are the classes which do the work during the animation. They all inherit from
FigureBase, which provides the housekeeping functions associated with the animation:
adding the �gure to and removing it from the list of active �gures, updating pointers
to the Set(s) being acted upon, and indicating whether the �gure is actually active
and running. FigureBase also provides prototypes for the functions Start, Finish,
StartLocation, EndLocation and Evaluate. These are called at appropriate stages in
the animation. They are all de�ned as virtual functions, as described in section 6.1.
This means new classes can be added without a�ecting the code which uses them.

The functions are described in more detail below.

Start The Start function does any setting up required. This may be as little as
adding the �gure to the list of active �gures, or may include some quite substantial
calculations, as in the Curve or Circular �gures (sections 9.2.2 and 9.2.5). Note
that even when this function is rede�ned in a derived class, the base function is also
called using the BaseClass::VirtualFunction syntax to ensure that the necessary
initial setting up is performed.

Finish The Finish function removes the �gure from the active list. It is not usually

32

rede�ned, but may be if a �gure needs to tidy up.

StartLocation and EndLocation These functions provide the locations of the dancers
at the start and end of the �gure. This is useful to allow animations to run both
forwards and backwards, and for jumping in at an arbitrary point.

Evaluate The Evaluate function does the main work. It is called at each timestep for
each �gure in the active list. This function is almost always rede�ned to provide
altered functionality. The only exceptions are where �gures are special cases of
other �gures, as Crosses are special cases of Curves, for instance.

The di�erent �gures fall into two groups: atomic �gures, described in section 9.2, and
composite �gures, encapsulated in the one class CompositeFigure. This is described
below.

8.1.4 The CompositeFigure class

A composite �gure is built up out of smaller �gures, which may be either atomic or
again composite. The class CompositeFigure holds a list of sub�gures represented as
FigureRecords. These sub�gures are obtained from the description given in the �le.

When a CompositeFigure is called at time t it runs through its list of sub�gures to
see if there are any which should be active at that time and are not. If it �nds any such
sub�gures it calls its Start function to makes it active. The �gure itself is responsible
for calling its Finish function when the time is past its �nishing time.

An optimisation which is performed is to sort the sub�gures in order of starting time,
and to keep a pointer to the �rst sub�gure not yet activated. This reduces the number
of �gures which need to be checked at each call, and hence the overhead of a fruitless
call.

The possibility of suspending the �gure until its children had �nished was considered.
This would remove the overhead when the �gure had nothing to do. Na��vely this might
seem quite simple|have the �gure suspended when it starts up another �gure, and
have the child �gure reactivate the parent �gure when it �nishes. This will not work,
however, because it is possible for one �gure to have two child �gures, one of which
starts while another is still progressing. If the parent �gure was suspended, the �rst
child �gure would be started on time, but the second would not be started until the �rst
had �nished, if at all.

8.2 The central look-up table of �gure de�nitions

The �gures are read in from a �le and stored in a central look-up table. The class
FigureDefs encapsulates this.

It contains a dynamic array of FigureNodes used for storing the de�nitions of the
�gures. These contain the names (full and abbreviated) of the �gures, together with a
list of FigureRecords as described in section 8.1.2 and the extra details of a dance, such
as devisor and tunes, if this is relevant.

The FigureDefs class provides functions to add a new �gure to the de�nitions, to
add another sub�gure to an existing de�ned �gure and to access the details of a given
record. It also provides the names of all the de�ned �gures in an array of char. This is
used during the animation to o�er the user a list of �gures for animation.

33

8.3 The supporting animation data structures

St�ephane Chatty puts forward a model for animated interfaces [17] which has four types
of entity: tempos, instruments, rhythms and dancers. Dancers are the visible end of
the structure, which move or change shape according to the notes which they are sent.
These notes, really messages in disguise, are sent by instruments every time they receive
a message from a tempo or rhythm. Tempos emit steady beats, and rhythms �lter these
beats to give patterned beats. Notes may be positions, colours, numbers, or even real
musical notes. Note that only the tempos have to worry about real-time issues|all the
others act on messages they receive.

So what application does this have to this project? The idea of separating out
the various functions into separate data types seemed useful, as did the hiding of the
real-time issues inside one module.

8.3.1 The real-time module

The Tempo class handles all the real-time issues. It holds a doubly-linked list of FigureBase
or derived classes as described above. These are the currently active �gures. Note that
the polymorphism of C++ allows the Tempo class to treat all derived classes as if they
were FigureBases; in fact the Tempo class need not know if there are a hundred derived
classes or none at all.

When the Start function is called, the Tempo class starts o� a timer and installs
a callback to receive the timer messages. This callback function runs down the list of
active �gures held by the Tempo class, calling the Evaluate function for each �gure.
Once all �gures have been dealt with the Tempo calls the Display function for all the
Sets (see the next section). This causes the Sets to call the Display functions of their
component Dancers which in turn causes the dancers to redraw themselves in their new
positions on screen.

There is a slight subtlety here in that the callback is a member function of a C++
class. All member functions expect a hidden parameter this which is a pointer to the
speci�c instantiation of the class. MS-Windows does not know which class installed the
callback, and so cannot pass this hidden parameter when calling it. The way round this
problem is to make the callback function a static member of the class. This means it
does not expect the parameter this. However it also means the function has no way of
knowing which instantiation of the class has the data it needs. In fact, it has no access
to any of the instantiation-speci�c data of any of the instantiations. This was handled
by having a static data member of the class, which is common to all instantiations of
the class, and also to static member functions. This was a pointer to an instantiation
of the Tempo class. One drawback with this approach is that only one Tempo class can
be active at any one time. In this case this is not actually a problem. If it was then the
static pointer could be changed, to a list of pointers, for example.

8.3.2 The display classes: Dancers and Sets

Sets

It may be thought that a set is just a collection of dancers, and a dancer is a dancer, but
even here there is justi�cation for a hierarchy. Sets may or may not be arranged into
couples|the Duke of Perth does have the dancers arranged in pairs of men and women
[4], but the Dashing White Sergeant has groups of three (two women and a man or two
men and a woman) facing each other [6]. Even in sets with couples the couples may be

34

arranged in a longwise set (Duke of Perth), in two lines of couples facing each other (La
Tempête) [5] or in a square (Clutha [10]) or triangular (The Wind On Loch Fyne [15])
set.

The inheritance and polymorphic features of C++ have again been used to good
e�ect here. All sets have a collection of Dancers and an associated display window.
This is a TWindow as supplied in the ObjectWindows class library (section 7.2). There
are also the virtual functions ResetSet to restore the dancers to their initial positions,
Display to display the dancers on the window, and Clear to remove the displayed
dancer preparatory to displaying her in a new location.

The protected functions AllocateDancers, StartUp and InitialiseSet are used
when an instance of the class is �rst created. These have the following uses:

AllocateDancers This function is responsible for creating the Dancers for the set. This
is rede�ned in derived classes to allow di�erent types of Dancers to be created|
four women and four men in a square set, or four women and two men for the
Dashing White Sergeant, for example.

InitialiseSet This function takes the Dancers created by the previous function, and
initialises their locations appropriately|in two rows with men facing women for a
longwise set, or around the perimeter of a circle, with men on their partner's left
in a circular set, for example.

StartUp This function is used in the work-around for the problem described below.

There was a problem with initialising the set when �rst created. Ideally the con-
structor of the base class would call the functions AllocateDancers and InitialiseSet.
These calls would then be mapped to the virtual functions of the derived class being
instantiated. However the vtable, the table of pointers to functions used in resolving
calls to virtual functions, is only updated on entry to the body of the appropriate class
constructor. The constructors of base classes are called before the body is entered, and
so the table gets �lled in from the bottom up: each class calls the constructor(s) of the
class(es) below, which �lls in the vtable up to that point, does any initialisation and
returns. The vtable is then updated for the current class, before its constructor body
is called. This means that at the time of the base constructor being called, the vtable
only contains the pointers corresponding to the base class, and so the constructor does
not know about rede�nitions later in the hierarchy.

To get around this, each constructor takes a
ag as an optional parameter, defaulting
to FALSE. A derived class calls the constructor below it with the
ag set to TRUE. If the

ag is FALSE this class is the topmost in the hierarchy, and so it calls its StartUp function
which does the necessary initialisation. The vtable is up to date because there are no
derived classes to rede�ne any of the functions and so the correct version of the function
is called. If the
ag is TRUE the constructor does no initialisation (other than that
provided by the compiler, such as vtable initialisation) and returns. This work-around
is less than ideal. It is diÆcult to see how the compiler could eÆciently act otherwise,
however.

Dancers

The dancers do have a lot in common, obviously. They have a position, and a number
indicating to which couple/group of the set they belong. However, the display functions
for men and women need to be di�erent|men are shown as circles, women as squares,

35

by convention. So instead of building this into a display routine, why not have separate
classes with a virtual function Display which is de�ned di�erently for each class.

This polymorphism bears fruit when the �gures involving couples acting as a unit,
such as an Allemande or a Promenade, or even a standard movement with a couple acting
as one of the participating dancers, such as in A Tribute to the Borders [11]. A new type
of dancer can be de�ned which is composed of two dancers joined together. These can
then be moved around exactly as if they were one dancer, and the SetPosition routine
of the new Dancer class will handle the positioning of the two members of the couple.

36

9. The derivation of the atomic �gure

functions

This chapter describes the atomic �gures developed, together with the mathematical
background to each and a list of their various options and parameters. The coordinate
system used is also discussed.

It is assumed that the reader is familiar with the dancing terminology in section 3.1.

9.1 The coordinate system

In this section the coordinate systems developed for the di�erent types of starting for-
mation are laid out, and their validity is argued.

T
O
P

f0

1 32 4

1 2 3 4100

-100

100 200 300 400
x

y

Figure 9.1: The longwise set coordinate system

Each dancer has three positional coordinates, (x; y; f). The x and y coordinates are
the standard cartesian coordinates, and the f coordinate indicates which direction the
dancer is facing, measured as an anticlockwise angle from parallel to the x-axis.

Angles are measured in degrees in the �les and in radians internally, and can be
fractional.

Figures 9.1 and 9.2 show the coordinate system used for longwise and square sets
respectively.

9.1.1 Longwise sets

In a longwise set the women are at positions (hnumber� 100i ; 100), with the men op-
posite them at (hnumber� 100i ;�100). This has the following advantages:
� The diagrams have the same orientation as in Pilling, with the top of the set on
the left of the diagram. [2].

� The positions can be read o� directly from the x-coordinates|a coordinate of 100
is in �rst place, while a coordinate of 250 is half way between second and third
places. Also, positive y-coordinates are on the women's side of centre, negative on
the men's, with 100 on the sideline.

37

T

O

P

i

i

r

(cos(� + �); sin(� + �))

� = iÆ

x

y

Figure 9.2: The square set coordinate system

� The spacing is close to the actual spacing used when dancing, where the space
between the two lines is roughly twice the space between people in a line.

� The centreline of the set runs down the x-axis. This means that the symmetry
inherent in the set layout is also inherent in the coordinate system.

� The f coordinate|the angle faced|is measured as an angle anticlockwise from
facing directly down the set. This is intuitively reasonable.

9.1.2 Square, triangular and other polygonal sets

In a \polygonal" set, by which I mean any set arranged in a circular fashion, so square
sets, triangular sets, hexagonal sets, and so on, the couples are arranged at equally
spaced intervals around the perimeter of a circle centered on the origin, and face towards
the origin.

The advantages of this layout are:

� It generalises readily to any number of couples.

� By continuing to use cartesian coordinates the straight-line movements can be
carried straight across, whereas using polar coordinates would call for some hor-
rendous maths even to describe a straight line if it did not pass through the origin.
(I know|I worked it out).

� By having the set centered on the origin the coordinates can easily be converted
to polar coordinates where this makes the calculations simpler.

� The diagrams again follow the Pilling standard, with the top of the set on the left
of the diagram.

� People standing next to each other (partners in this case) have the same distance
between them as in a longwise set.

38

To be more precise about the positioning, the midpoint between the two members
of a couple is on the circle, and the two dancers are 100 units apart along the tangent
to the circle at that point. The couples are numbered clockwise from the couple at the
top of the set, which is again on the left. After some experimentation the radius of the
circle was set to be 50 � (number-of-couples� 1), a value which was found to give a
convincing spacing for the numbers of couples tried.

Working through this, let N be the number of couples in the set, and let all angles
be measured in radians (since these calculations are only relevant internally). We then
have

r = 50� (N � 1) (9.1)

Also

TopOfSet = � � at the negative end of the x-axis (9.2)

The angle Æ between couples is

Æ =
2� �
N

(9.3)

and so the angle of rotation �i for couple i, measured anticlockwise from the x-axis
is

�i = TopOfSet� ((N � 1)� Æ) (9.4)

From this the centre point Ci for couple i is

Ci = (r cos �i; r sin �i; �i + �) (9.5)

The tangent is at right angles to the radius, and hence the f -coordinate, so at �i+�=2.
The woman is 50 units along the tangent anitclockwise from the point of intersection,
and the man the same distance clockwise. This o�set �i is

�i = (50 cos (� + �=2) ; 50 sin (� + �=2) ; 0) (9.6)

The woman's position Li is Ci + �i and the man's, Mi is Ci ��i, which gives us
the �nal equations

Li = (r cos �i + 50 cos (� + �=2) ; r sin �i + 50 sin (� + �=2) ; �i + �) (9.7)

Mi = (r cos �i � 50 cos (� + �=2) ; r sin �i � 50 sin (� + �=2) ; �i + �) (9.8)

9.2 The atomic �gures

This describes the actual �gures. All the �gures are de�ned as functions to allow ar-
bitrary precision in the calculation of locations. They receive the current time in bars,
counted from the start of the animation and, with one exception, convert this into a
fraction between 0 and 1 of the overall duration of the movement.

9.2.1 Straight-line movements

Command: Move or MV and MoveTo or MVT.
The �gures Move and MoveTo encapsulate a movement in a straight line. Move is a

39

Figure: Parameters Description

Move:x, y and f displacement. De-
fault: 0 0 0.

A relative movement in a
straight line.

Curve:x and y displacement, plus an-
gle subtended by arc. Default:
0 0 90.

A relative movement in a curve.

CurveTo:x and y location of endpoint,
plus angle as above. Default: 0
0 90.

An absolute movement in a
curve.

Cross:The hand grip used (LH, RH,
BH or N[one]), and x and y dis-
placements to be added to the
destination. Default: N 0 0.

Exchanges the position of the
two dancers using a 90Æ curve.

CrossDown:The hand grip used, and the
number of places moved down.
Default: N 0.

As above, but the move appro-
priate to the number of places
is added to the destination.

CrossUp:The hand grip used, and the
number of places moved up.
Default: N 0.

As above, but the move is in the
opposite direction.

Cast:The number of places cast. De-
fault: 1.

A cast o� by the number of
places. A negative number of
places gives a cast up.

CircularFigure:The direction (L/R/B) and per-
centage of a complete circle.
Default: B 100.

Moves all the participants in a
circle around the average of the
starting positions.

Circle:As Above. As above, but has the partici-
pants holding hands around the
circle.

Wheel:As above. As above, but has the partic-
ipants' hands meeting at the
centre point.

Reel:The number of participants, the
starting shoulder and the per-
centage of a complete reel. De-
fault: nParticipants R 100.

Does an appropriate
reel with the axis set by the end
participants.

FigureEight:The start (XU/XD/CU/CD)
and the percentage. Default:
XD 100.

Based on a reel of three.

StepDown:The number of places. Default:
1.

Step down the number of places
in four steps taking two bars.

StepUp:The number of places. Default:
1.

Step up the number of places in
four steps taking two bars.

Table 9.1: The atomic �gures de�ned|quick reference.

40

relative movement, where the parameters are added onto the starting position, while
MoveTo is an absolute movement, leaving the dancer at the speci�ed location at the end
of the movement. MoveTo converts the absolute coordinates to relative coordinates for
each dancer in the list and passes them on to Move. This uses simple linear interpolation
on the three coordinates independently to calculate the new coordinates.

So for a dancer at (xd; yd; fd) with input (xt; yt; ft) MoveTo would pass Move the
relative coordinates (xr; yr; fr) = (xt � xd; yt � yd; ft � fd). To calculate the position at
time �t 2 [0; 1] Move would use the equations

x = xd + (�t� xr) (9.9)

y = yd + (�t� yr) (9.10)

f = fd + (�t� fr) (9.11)

If more than one dancer is speci�ed, this procedure is carried out for each dancer
given. If more than one set of parameters is passed to Move they are cycled through until
all dancers have had positions calculated. For instance, if six parameters were passed
(two sets) and there were three dancers listed, the �rst dancer would get the �rst set
of parameters, the second dancer would get the second set of parameters, and the third
dancer would get the �rst set of parameters again.

Any missing parameters are set to zero. So if the parameters passed were 1,2,3,4
Move would have two sets of parameters: (1,2,3) and (4,0,0).

These are features built into the program to make it more error-tolerant, and to
allow the devisor to take shortcuts where she wishes.

9.2.2 Curved movements

Command: Curve or CV and CurveTo or CVT.

(xs; ys; fs)
�

(xr; yr; fr)
r

(xt; yt; ft)

1

�

y

x

Figure 9.3: The mapping for the maths of the Curve �gure.

An absolute curve, CurveTo, is converted internally to the corresponding relative
curve. For instance, if the dancer is at (xd; yd; fd) and the parameters are xt, yt and �
the parameters are converted to xt�xd, yt�yd, theta. The relative curve Curve is then

41

called with these parameters.
A relative curve is speci�ed by its starting position, the displacement of the endpoint,

and the angle of curvature. The starting position is set by the position of the dancer
at the start of the movement, and the x and y components of the displacement and the
angle of curvature are given as parameters to the �gure. If not speci�ed, the x and y
coordinates are assumed to be zero and the angle is assumed to be 90Æ, which was found
to give a realistic curve.

The way this function works is to map the curve onto an arc on the unit circle with
the starting point mapped to (1; 0). The position along this arc is then calculated,
and the result rotated and scaled to give the true coordinates. The mapping, which is
constant throughout the �gure, is calculated when the �gure is initialised, and so much
less work needs to be done at each step of the animation.

The calculation of the values used in the mapping is done as follows. Given an o�set
(�x;�y) and an angle of curvature � the angle is �rst converted from degrees to radians.

The length of the chord Cb whose angle subtended at the centre is � is the �rst thing
calculated:

Cb =
q and the ratio of the two stored in S

S =
Cr

Cb

The anticlockwise angle from the positive end of the x-a
is stored in �:

� = tan�1
�
y

x

�
and from this the angle of rotation in the mapping, , i

 =

(
�� 1

2
(� + �) : � � 0

�+ 1

2
(� + �) : � < 0

All the preliminary calulations have now been done. W
is called at time �t 2 [0; 1] only a couple of calculations n
the point on the unit circle and rotate and scale it up. But
at time �t is calculated:

�0 = � ��tThis makes the point on the unit circle

pu =
�
cos �0; sin �0

�
This is now to be rotated about the endpoint|(1; 0) on

origin must �rst be moved to (1; 0). This gives

pi =
�
cos �0 � 1; sin �0

�

42

Now for the rotation itself. Here the rotation matrices used in Computer Graphics
[23, 24, 25] come in useful. To rotate a point (x; y) by an angle � anticlockwise about
the origin the calculation is as follows:

�
x0; y0

�
=

cos � � sin �
sin � cos �

!
x

y

!
(9.20)

Multiplying out, with pi our initial point and our angle of rotation, and scaling
up by S we get

x0 = S
�
cos

�
cos �0 � 1

�� sin sin �0
�

(9.21)

y0 = S
�
sin

�
cos �0 � 1

�
+ cos sin �0

�
(9.22)

This is the displacement from the starting point (xd; yd; fd). The actual position can
be found by adding the two together. The dancer is assumed to be facing along the
tangent at the point, so the f -coordinate is

f 0 = tan�1
�
y

x

�
(9.23)

The calculated point is then

(x; y; f) =
�
xd + x0; yd + y0; f 0

�
(9.24)

Note that the only calculations made at time �t are �0 (9.17), x0 and y0 (9.21 and
9.22), f 0 (9.23) and the �nal point (9.24).

9.2.3 Crosses

Command: Cross or C, CrossUp or XU and CrossDown or XD.
A cross is based on an absolute curve. It exchanges the positions of the two dancers

using a 90Æ curve, adding the optional o�set to both end positions. So for dancer A at
(xA; yA; fA) and dancer B at (xB ; yB ; fB), with o�sets �x and �y, dancer A would have
a CurveTo with parameters xB +�x, yB +�y, 90, and dancer B would have a CurveTo

with parameters xA +�x, yA +�y, 90.
CrossDown is implemented using a cross with o�set nP laces�100, 0, where nP laces

is the second parameter to the �gure, while CrossUp is passed straight on to CrossDown

with the parameter negated.
The �rst parameter to all the variants gives the hand grip used in the cross. This

may be L, R or B meaning left hand, right hand and both hands respectively. Each of
these may be followed by an H, meaning hand or an S meaning shoulder. In the second
case no hands are given. The parameter may also be N, which may be followed by an H

and an R or an L indicating the shoulder. If no shoulder is indicated it is assumed to be
right.

If no parameter is given, NHR is taken by default.
The angle of the curve is set by the side of passing: a left hand pass calls for a 90Æ

curve, while a right hand or both hand pass calls for a �90Æ curve.

9.2.4 Casting o� and up

Command: Cast or C.
A cast involves the dancer curving out behind the other dancers on that side of the

43

set, dancing up or down the set the requisite number of places, and then curving back
into the sidelines.

If casting o� on the womens' side or up on the mens' side this start with a 90Æcurve
to the right|a �90Æ anticlockwise curve. If casting up on the womens' side or o� on
the mens' this calls for a +90Æ curve at the start. This curve has x-o�set 50 for casting
o� and -50 for casting up, with y-o�set 50 on the womens' side, and -50 on the mens'.
It is followed by a Move of (100(N � 1); 0) for casting o� or (�100(N � 1); 0) if casting
up, where N is the number of places cast. The movement �nishes with another curve
identical to the �rst, but with the y-coordinate negated.

9.2.5 Circular �gures

Command: There is no corresponding command.
This is an internal �gure used by Circles and Wheels (sections 9.2.5 and 9.2.5). It

moves the dancers around in a circle, centred on the midpoint of the dancers, and of
radius r = 25N . The midpoint (xC ; yC) is calculated by taking the average of the x-
and y-coordinates of the dancers.

The dancers may be given in any order, but are sorted internally in order anticlock-
wise from a line running from the midpoint parallel to the positive end of the x-axis.

If the dancers are placed with the �rst dancer on the x-axis, and the others equally
spaced around the perimeter of a circle, the calculations are easy|just add an o�set
multiplied by the appropriate amount to a calculated starting angle, and take the cosine
and sine of the resulting angle for the x- and y-coordinates. However it is more usual for
the dancers to be o�set from the canonic positions. To allow for this, an angular o�set
is also calculated when the �gure is initialised. This is calculated as follows, where N is
the number of dancers.

The angle between dancers, Æ, is

Æ = 2�=N (9.25)

The o�set for dancer i, �i is then the calculated angle minus the actual angle, or, if
(xd; yd; fd) is the initial position

�i = iÆ � tan�1
�
yd
xd

�
(9.26)

The o�set used in the calculations, �Av is then

�Av =
1

N

NX
i=1

�i (9.27)

When the positions are calculated, the base angle of rotation, �, is �rst calculated.
For a circle one way only, this is �t� 2�p=100 for a circle to the left, or the negative of
this for a circle to the right. For a circle round and back it is

� =

(
�t� 4�p=100 : �t < 1

2

(1��t)� 4�p=100 : �t � 1

2

(9.28)

So for the �rst half the angle increases, and for the second half it decreases back to
zero. In these equations p indicates the percentage of a complete circle, and is given in
the second parameter. If not speci�ed, it defaults to 100.

From this angle � the positions can be calculated. For dancer i the coordinates are:

44

� � �

Reel of 3 Reel of 4

� n� 1 loops -

Reel of n

Figure 9.4: Reels of three, four and more.

x = xC + r cos (� + iÆ) (9.29)

y = yC + r sin (� + iÆ) (9.30)

f = � tan�1
�
y � yC
x� xC

�
(9.31)

If the circle is not a complete circle, the dancers are left in a position based on their
starting positions, but rotated through 2�p=100. This uses the standard rotation as
described in section 9.2.2. So for a dancer at (xd; yd; fd), after p% of a circle, the �nal
position is calculated as follows (for a circle to the right):

�i = 2�p=100 + tan�1
�
yd � yC
xd � xC

�
(9.32)

ri =
q
(xd � xC)2 + (yd � yC)2 (9.33)

xi = ri cos �i + xC (9.34)

yi = ri sin �i + yC (9.35)

fi = ��i (9.36)

Circles

Command: Circle or O.
This �gure is based on the circular �gure but has the participants holding nearer

hands while performing it.

Wheels, stars and turns

Command: Wheel or W, HandsAcross or HA and Turn or T.
This is based on the circular �gure (section 9.2.5), but has the dancers all with their

right hands in the middle when circling to the left, or their left hands in the middle
when circling to the right.

Note that a single handed turn is a wheel with only two dancers. Note also that a
left-handed wheel is a wheel to the right, and vice versa.

9.2.6 Reels

Command: Reel or R.
A reel, known as a hay in English Country Dancing, is a �gure in which the dancers

weave in and out up and down a line back to their original starting place, passing other
dancers alternately by the right and left shoulder. All dancers are travelling along the

45

same path; the only di�erence between them is where on the path they start. For
instance, in a reel of three, involving three dancers, each dancer describes a �gure 8 on
the
oor. In a reel of four, an extra loop is added. In general, for N dancers, there are
N � 1 loops (see �gure 9.4).

The mathematical object which most closely matches this is a Lissajou �gure. This
is formed by plotting sin (k1t) against sin (k2t+ c), where k1, k2 and c are constants.
For n loops k1 and k2 should be chosen so that k1=k2 = n.

The basic Lissajou �gure has its endpoints at (�1; 0). This means a scaling and
rotation must again be performed, as with the Curve. The base points of the reel,
matching the endpoints of the Lissajou �gure, are taken to be the positions of the
endmost dancers. For a reel of three these are the second and third dancers; for all
other reels these are the �rst and last dancers. Let them be at positions (xa; ya; fa) and
(xb; yb; fb).

The scale is set from the ratio of the sizes of the axes in the two �gures: Cb in the
base �gure and Cr in the actual reel. In these calculations all working is done in screen
units, so Cb is 2� 100 = 200. Cr is

P� = (�x;�y) = (xb � xa; yb � ya) (9.37)

Cr =
q
�x2 +�y2 (9.38)

and so the scale S is Cr=Cb = Cr=200. The angle of rotation, , and the centre point
of the reel, PC , can also be calculated from P�:

 = tan�1
�
�y

�x

�
(9.39)

PC = (xC ; yC ;) =

�
xa +

1

2
�x; ya +

1

2
�y

�
(9.40)

That is all the preparatory calculation done. The positions of the dancers are worked
out by calculating the positions on the canonical reel, Pr = (xr; yr; fr), and then rotating
these by and scaling by S:

xi = xC + S (xr cos � yr sin) (9.41)

yi = yC + S (xr sin + yr cos) (9.42)

fi = fr + (9.43)

The calculations for Pr are done in a subroutine. The base angle � used in generating
the position in the Lissajou �gure at time �t 2 [0; 1] is 2� � �t. First an o�set � to
this basic angle is calculated depending on where the dancer started the reel. For a reel
of three, for instance, this is

46

�3 =

8>>>>>>>>>>>><>>>>>>>>>>>>:

O�set : Starting location
0 : Centre
�

2
: Leading end

3�

2
: Trailing end

�

4
: Casting down

5�

4
: Casting up

3�

4
: Crossing down

7�

4
: Crossing up

(9.44)

The last four cases are used in �gures of eight. For a reel of four it is simpler:

�4 =

8>>>>><>>>>>:

O�set : Dancer number
3�

2
: 1

7�

6
: 2

�

6
: 3

�

2
: 4

(9.45)

In a reel of three two of the dancers collide in the centre if they don't avoid each
other. To prevent this, one of them has priority over the other. The dancer with priority
speeds up slightly while the other slows down when they pass through the centre, and
they then return to their normal speeds. I have simulated this by perturbing the base
angle by a sinusoidal o�set Æ when these dancers are near the centre. ÆL signi�es the
leading dancer's o�set, and ÆT represents the trailing dancer's. These are:

ÆL =

8>>>>>><>>>>>>:
1

5
cos(2�) :

8><>:
��

4
< � < �

4
3�

4
< � < 5�

4
7�

4
< � < 9�

4

0 :

(
�

4
� � � 3�

4
5�

4
� � � 7�

4

(9.46)

ÆT = �ÆL (9.47)

The values 1

5
and 2 were derived by experimentation. For the other dancer, and for

other reels, Æ = 0. From this we can now calculate the positions on the canonical �gure,
Pr = (xr; yr; fr).

xr = sin (� + Æ) (9.48)

yr3 =
1

2
sin ((n� 1) �) (9.49)

yr4 = �1
2
sin

�
(n� 1) � +

�

2

�
(9.50)

fr = tan�1
(n� 1) cos ((n� 1) �)

cos �
(9.51)

9.2.7 Figure of Eight

Command: FigureEight or FIG8.
The FigureEight �gure uses the calculations for the reel of three. The initial setup is

as described there, with the exception that the scale is multiplied by
p
2. The Evaluate

function calls the Reel subroutine to calculate the canonical positions, and then scales

47

and rotates this exactly as described in equations 9.41{9.43.

9.2.8 Stepping up and down

Command: StepUp or SU and StepDown or SD.
This is described by the RSCDS [14] as follows:

This movement is used to leave a space for the dancing couple or to
shorten the track over which they must dance. : : :

Steps: Four even steps to four counts.
Bars of Music: Two.
A: Stepping Up.

1. Step up to the side with the foot nearer the top of the set.

2. Step across in front of it with the other foot.

3. Step up to the side again with the �rst foot.

4. Close the other foot into �rst position.

B: Stepping Down.

This is the same movement as stepping up, but begins with the foot
nearer the bottom of the set.

Note: When two or more couples step up or down, they join nearer hands
at shoulder height on the side lines. To assist a casting couple, it is helpful
to step in and up on count 1 and back to the side line on count 3.

This is the only �gure which does not convert the current time (in bars) into a
fraction of the overall duration.

It takes one parameter, N , indicating the number of places to step up or down. If
no parameter is passed it defaults to 1.

Note: StepUp is implemented by negating the parameter N and passing it on to
StepDown.

The function acts as follows:

� If the time is between 0 and 0.5 bars after the start of the movement the function
does nothing.

� If the time is between 0.5 and 1.0 bars after the start of the movement the function
alters the position by (25�N; 15; 0).
� If the time is between 1.0 and 1.5 bars after the start of the movement the function
alters the position by (50�N; 20; 0).
� If the time is between 1.5 and 2.0 bars after the start of the movement the function
alters the position by (75�N; 15; 0).
� If the time is over 2.0 bars after the start of the movement the function alters the
position by (100 �N; 0; 0).

The x value is added for StepDown and subtracted for StepUp. The y value is added
for men and subtracted for women|always moving towards the middle of the set.

9.2.9 Petronella

Command: Petronella or PTR.
The dancers perform a �90Æ curve 144 units along a line at 45Æ clockwise to the

direction they are facing.

48

9.3 Couple �gures

The following �gures all treat couples as a unit.

9.3.1 Promenade

Command: Promenade or PROM.

9.3.2 Allemande

Command: Allemande or ALL.

9.3.3 Poussette

Command: Poussette or PST.
This has several variants depending on the number of couples involved and the tempo

of the dance (reel/jig or strathspey).

49

10. The dance compiler

This section provides a brief description of the approach taken to converting dances
described in a �le into the internal data structures used by all other modules of the
program.

It was decided to implement a compiler by hand rather than using tools such as Lex
and Yacc [28], since the input language was relatively simple, and more time might have
been spent in learning how to use the tools than in writing it from scratch.

Most of the functions were member functions of the appropriate C++ classes. This
approach had some bene�ts, notably in a clean approach to the coding where the object
has control of its own modi�cations, and some drawbacks. The drawbacks stemmed
mainly from a lack of global data in the lower level functions, making repeated sections
of a dance less easy to implement, for instance.

Each function takes a C++ stream as its parameter and sets or updates the various
data items of the class appropriately. This is �ne when only one item needs to be set,
but when there is a list of items with some common structures, such as in repeated
�gures, the class needs to create the extra structures and return them somehow. This
was achieved by creating a copy of the class item, chaining it onto a list, and updating
the current item.

With the above provisos, the compiler implemented was based on a standard recursive-
descent parser [28], with each function constructing a token and calling other functions
to construct component tokens. A FigureDefs structure was produced at the end, hold-
ing the relevant de�nitions. The fact that the parsing functions are member functions
of C++ classes makes no di�erence to the approach.

50

11. The animation

Two possible approaches to producing an animation from the data structures developed
were considered.

The �rst used the fact that the �gure de�nitions produce a tree, with composite
�gures at the nodes, and atomic �gures at the leaves. The active �gures at various
stages of the dance The Duke Of Perth are highlighted in �gure 11.1.

This approach e�ectively performed a lookup on the data in the tree at each timestep.
All child �gures which started before the current time and �nished after would be
recursively evaluated. This requires the whole tree to be instantiated throughout the
animation, even though there are nodes which play no part in the evaluation process at
the time. This could be thought of as a repeated query.

The second approach had a list of active �gures, along the lines of St�ephane Chatty's
musical metaphor (section 8.1.3 and [17]). When a child �gure was due to start, the
parent �gure would place it on the active list. Once a �gure was past its end time, it
would remove itself from the active list. This approach could be thought of as a single
tree traversal. It has the bene�t of requiring less storage space, since the �gures only
need to be instantiated while they are actually active. This was the approach selected
and implemented.

As described in chapter 8, this led to the development of a class Tempo to receive
timer events at set intervals. This class held a circular doubly linked list of active �gures
with a single dummy �gure to provide a handle. New �gures were inserted after the
dummy �gure. The �gures themselves held the pointers and thus could be removed from
the list with no need for a (linear time) search. This allowed insertion and deletion both
to be performed in constant time. Lookup of arbitrary �gures was not an issue since
the list was traversed completely and each �gure Evaluated at each timestep.

11.1 Running an animation

To produce an animation the procedure is as follows:

1. A �le containing one or more dances is loaded into the FigureDefs structure.

2. A list of available �gures (remember a dance is just a �gure) would be o�ered to
the user. She would select one for running.

3. A FigureBase structure would be created from the appropriate de�nition record
and added to the Tempo's active list. Note that this may be a CompositeFigure

or one of the various AtomicFigures (see section 8.1).

4. A Set corresponding to the set type in the �gure de�nition would be created and
initialised. This would then be displayed in a window on screen.

5. The user would click on the Play button. This would cause a message to be sent
to the Tempo to start up the timer.

Figure 11.1: The active �gures during an animation of the dance The Duke of Perth,
viewed as a tree. The time increases from left to right within each �gure. Simultaneous
�gures are joined to their parent �gures at the same point.

51

6. Various timer events would occur, so Figures would be Evaluated, start other
�gures, remove themselves, and update Dancer positions. At each timestep the
new con�guration of the Dancers would be displayed on the window.

7. The user could stop, fast forward or rewind the animation. This is achieved by
changing the amount by which the bar count is incremented at each timestep. If
the animation is stopped the timer would also be stopped.

8. Eventually the last Figure would �nish, leaving the active list empty. The timer
would then be stopped.

11.2 Problems encountered

This section describes some of the problems encountered when producing the animations,
and the solutions developed.

11.2.1 Screen refresh

The initial approach to the animation was made as simple as possible to ensure that all
the mechanisms worked. The window was completely cleared at each timestep and the
dancers displayed in their new positions. Not surprisingly, this approach was extremely
slow and
ickery. Various optimisations were tried.

XOR drawing The dancers were displayed using exclusive-or plotting. At each timestep
the dancers would be redisplayed at their old positions to return the display at
that point to its original state: (AXORB) XORB = A. They would then be dis-
played at their new positions. For some undetermined reason the XOR drawing
did not work, and all drawing was done in \set" mode.

Memory BitBlts All drawing was done on a memory bitmap compatible with the
window, and then this bitmap was copied to the screen using a bit-block transfer,
or BitBlt. The bitmap was again wiped clean at each timestep by drawing a white
rectangle the size of the bitmap on it. This cured the
icker, but still su�ered from
performance problems. It was decided to use a variant of this to avoid the
icker,
and to try further optimisations.

Mini-cls By not clearing the screen at all, and just drawing the dancers in their new
positions it was determined that this screen-clearing formed a large part of the
overhead of the display. This suggested shrinking the area cleared to just that
appropriate to the dancers. The Dancer classes were each given an extra Clear

member function used to remove them from the display. These drew a white
rectangle just large enough to cover the original display of the dancer, over the
last location of the dancer. The memory drawing approach proved a boon here,
since the \screen" could be cleared straight after it had been displayed, without
causing
icker. This meant there was no need for storing the previous state of the
dancers.

This approach �nally bore fruit, allowing a reasonable refresh rate.

11.2.2 Finishing and synchronisation

The �rst animations produced were a mess. The �rst �gure would be �ne, but would
not leave the dancers in the right positions. Since each �gure works on the location

52

of the dancers at the time when it is started, the second �gure would have its dancers
starting slightly o� from where they should have been, and leave them even further
away. The error would propagate in this way, similarly to round-o� error, until by the
end the dancers would be so out of place that the �gures were unrecognisable.

The problem was that �gures did not �nish cleanly. To counteract this an extra
virtual member function was added to the AtomicFigure classes which calculated the
correct positions of the dancers at the end of the �gure. This function, EndLocations,
was then called when the �gure was �nishing. This made sure that the dancers ended
in the correct places.

11.2.3 Phrasing

The EndLocations function made sure that dancers ended in the correct places when
the �gures �nished. This led to another problem. The functions for some �gures do not
naturally leave their participating dancers in an appropriate place|the circular �gures
are an excellent example. This can lead to a sudden jump at the end of the �gure.

Another related problem is when one �gure needs the dancers in di�erent locations
to those in which the previous �gure leaves them. An example would be where two reels
of three on the sides, �nishing with all the dancers on the sidelines, is followed by a
�gure involving corners, with the dancing couple in the middle of the dance to start.
This was catered for by allowing the dance devisor to specify where the dancers should
�nish the �gure and hence where they should start the next �gure. However, it again
causes the dancers to make a prodigious leap as the �gure ends.

The solution implemented took advantage of the multiple inheritance features of
C++: a class can inherit properties from more than one parent class. A new member
function, PhrasedEvaluate, was added to the FigureBase class, which accepted the
same parameters as the Evaluate function, and did nothing except pass these param-
eters straight through. A new class, PhrasedFigure, was developed. This was derived
from FigureBase and overrode this PhrasedEvaluate function. Instead of simply call-
ing Evaluate with all parameters unchanged, this function �rst checks the time. If it
is between one and two bars from the end of the �gure, it halves the time left. This
means that the �gure �nishes one bar early. If there is less than a bar left, the function
calculates the position on a straight line between the end of the �gure and the speci�ed
ending location, using linear interpolation exactly as described in section 9.2.1. This
copes with the most common case where the dancer must speed up and cover extra
ground. It does not handle the case where the �nishing position is on the track of the
dancer, and the dancer must slow down to avoid arriving too early.

Figures for which phrasing was appropriate, such as Wheel, Circle and CompositeFigure
had PhrasedFigure added to the list of parent classes, thus causing the new version of
PhrasedEvaluate to override the version from AtomicFigure.

11.2.4 Reverse playback

Providing reverse playback proved awkward due to the sequential approach to animating
dances. The functions were geared to calculating an o�set from the initial starting
positions. When the �gures are being displayed backwards, with the time decreasing
as the animation progresses, the positions of the dancers on entering the �gure are the
�nishing positions, and so the o�sets are based on the wrong position.

The solution to this was to run through the �gures at the start of the dance, cal-
culating and storing starting positions for each. The calculations could then use these
starting positions whether the dance was being run forwards or backwards. A further

53

bene�t of this approach was that the user could jump in at any point in the dance, and
the �gures would still know where the dancers were supposed to be.

54

12. Conclusions

A �le format has been de�ned, a data structure developed, and a parser written to build
the data structure from �les in the given format. An animation module has also been
developed running under MS-Windows.

The implementation language, C++, allowed the implementation to model the prob-
lem quite naturally. The inheritance and polymorphism allowed clean eÆcient coding
of related structures, and the templates provided a useful shortcut to generating similar
data structures di�ering only in base type. There were various problems, described in
the relevant sections, but on the whole the language was a help rather than a hindrance.
A particularly useful feature was the class library provided with the compiler which
allowed the interface to be built without reinventing the window.

12.1 Further work

Although the modules developed form a completed unit, there are various possible av-
enues for further exploration. These are exactly those modules described initially which
were not implemented.

They are:

� A parser to handle cribs [very near to] the text format.

� Automatic generation of text and Pilling cribs from the dance description.

� A devisor's workshop along the lines of a drawing package.

� Databasing functions|search for dances by name, source, tune, �gures, or a com-
bination of these.

� A ball programme editor using the databasing functions.

� Music.

These are described in greater detail below.

12.1.1 A parser for RSCDS-style cribs

At �rst sight this might seem extremely ambitious. After all, the RSCDS cribs are
written in English prose. However, closer examination reveals a de�nite structure to the
cribs. This could be exploited in the de�nition of a language which is very close to the
RSCDS cribs and yet is rigorous enough for a computer to parse.

For instance, looking at the sample RSCDS-style crib given in �gure 3.1, it can be
seen that it breaks down into two sections: a preamble giving the dance name, the source
or devisor, the type, the initial con�guration and the tunes; and the description of the
dance.

The �rst eight bars provide a good example of the structure of the descriptions.

1{8 1st and 3rd couples dance a double �gure of eight, 1st couple crossing
down and 3rd couple casting up to start.

55

It starts with an indication of the bars on which the �gure starts and ends. The
participating dancers are then enumerated, followed by the �gure danced and any qual-
ifying information. Here the �gure starts on bar 1 and runs until bar 8. First and third
couples are involved, and they dance a double �gure of eight. First couple start the
�gure by crossing down and third couple start by casting up.

Bars 17 to 24 have a �gure which is de�ned in the description|in a manner com-
pletely analogous to the de�nition of the whole dance:

17{24 1st couple with 2nd and 3rd couples dance the Millwheel:

1{2 1st lady with 2nd couple and 1st man with 3rd couple dance right
hands across in a wheel half way round.

3{4 2nd and 3rd couples dance left hands across in a wheel half way
round while 1st couple chase 1/4 of the way clockwise round the
set.

5{6 1st lady with 3rd and 2nd ladies, 1st man with 3rd and 2nd men
dance right hands across in a wheel half way round.

7{8 1st couple turn 1 1/4 by the left hand to face �rst corners.

Bars 3{4 of this subde�nition illustrate how simultaneous actions are indicated: the
word while separates two descriptions.

There is quite a lot of structure already, and I feel that with only a small amount of
extra formality a full parser could be built.

12.1.2 Automated crib generation

The idea here is to take the dances held internally in the data structure and generate
cribs on screen or on a printer in either the RSCDS-style or Pilling-style formats.

This involves mainly a look-up table of outputs for the di�erent �gures, together
with some way of specifying the participants. Some elements of typesetting would need
to be incorporated to get a reasonable display.

12.1.3 A devising package

This would be a module to help in devising a new dance. It would probably be in the
style of a drawing package, with palettes or menus of �gures which are dragged and
dropped into place. These �gures could then have their participants and parameters
edited. This module would probably build on the Pilling-style diagram module.

12.1.4 A dance database

Since the dances are on computer, it should be a relatively simple task to create a
database of the dances. This would allow dances to be found by name, devisor, tune,
set type, component �gures, or a mixture of attributes. It could be used to generate an
index of formations and associated dances similar to that published by the RSCDS [12].

12.1.5 A ball programme editor

This would be a module to aid the writing of ball programmes. There are guidelines
for putting together such programmes, most of which are common sense. For instance
it is recommended to aim for a fast, fast, slow, fast, fast, slow, : : : , fast, fast ordering
of dances. Also a mix of dances is recommended, with as wide a spread of �gures

56

as is possible. If the same �gure comes up too many times people get bored. One
particularly wants to avoid having dances which have a large degree of overlap on the
same programme. I remember once dancing The Deil Amang the Tailors [8] followed by
Berwick Johnnie [9]. These dances di�er only in their last eight bars and one is a reel
and the other a jig; in fact a reel was played for the jig as well. People were not amused.
A database such as described in 12.1.4 above would help avoid such occurences.

12.1.6 Music

Scottish Country Dancesare always done to music. Accordingly it would be good to
allow music to be stored in the database and/or played in time to the animation. It
would probably be quite a large task to add this capability, however. Particular thought
would need to be paid as to how the music would be entered. Would a language be
developed, or would an interactive score editor be written, or what?

57

Bibliography

[1] F. L. Pilling. Scottish Country Dances in Diagrams. Leeds, 1955.

[2] C. N. Ribbeck, J. P. Duckett, S. Duckett, J. B. Elsley and H. Williams. Scottish

Country Dances in Diagrams. Sixth Edition, Chester, 1992.

[3] The Scottish Country Dance Books 1{37, assorted other books of dances. The
Royal Scottish Country Dance Society, 12 Coates Crescent, Edinburgh EH3 7AF,
1927{1993.

[4] Book 1: The Scottish Country Dance Book. The Royal Scottish Country Dance
Society, 12 Coates Crescent, Edinburgh EH3 7AF, 1927, reprinted Hawick, 1985.

[5] Book 2: The Scottish Country Dance Book. The Royal Scottish Country Dance
Society, 12 Coates Crescent, Edinburgh EH3 7AF, reprinted 1985.

[6] Book 3: The Scottish Country Dance Book. The Royal Scottish Country Dance
Society, 12 Coates Crescent, Edinburgh EH3 7AF, reprinted 1985.

[7] Book 11: The Scottish Country Dance Book. The Royal Scottish Country Dance
Society, 12 Coates Crescent, Edinburgh EH3 7AF, reprinted 1986.

[8] Book 14: The Scottish Country Dance Book. The Royal Scottish Country Dance
Society, 12 Coates Crescent, Edinburgh EH3 7AF, reprinted 1986.

[9] The Book of Graded Scottish Country Dances. The Royal Scottish Country Dance
Society, 12 Coates Crescent, Edinburgh EH3 7AF.

[10] Book 31: The Scottish Country Dance Book. The Royal Scottish Country Dance
Society, 12 Coates Crescent, Edinburgh EH3 7AF, 1982.

[11] Assorted lea
ets containing single Scottish Country Dances. The Royal Scottish
Country Dance Society, 12 Coates Crescent, Edinburgh EH3 7AF, various dates.

[12] E. Callander-Sharp. Formation Index. The Royal Scottish Country Dance Society,
12 Coates Crescent, Edinburgh EH3 7AF, 1978, revised 1981, 1983, 1988, 1992.

[13] J. Milligan. Won't you join the dance?. The Royal Scottish Country Dance Society,
12 Coates Crescent, Edinburgh EH3 7AF, 1976.

[14] The Manual of Scottish Country Dancing. The Royal Scottish Country Dance
Society, 12 Coates Crescent, Edinburgh EH3 7AF, 1992.

[15] Dunedin Dances. Dunedin Dancers, Edinburgh. Reprinted 1993.

[16] R. N. Goss. Computer Plotting of Country Dance Figures. MSc Thesis, St. Andrews,
July, 1984.

[17] S. Chatty. De�ning the dynamic behaviour of animated interfaces. Engineering
for Human-Computer Interaction 95{109, Elsevier Science Publishers B.V.(North
Holland), 1992.

[18] Borland C++ Version 4.0 Programmer's Guide. Borland International, Inc, 100
Borland Way, Scotts Valley, California, 1993.

58

[19] Borland ObjectWindows for C++ 2.0|Programmer's Guide. Borland Interna-
tional, Inc, 100 Borland Way, Scotts Valley, California, 1993.

[20] Borland ObjectWindows for C++ 2.0|Reference Guide. Borland International,
Inc, 100 Borland Way, Scotts Valley, California, 1993.

[21] C. Petzold. Programming Windows, edition 2. Microsoft Press, Washington, 1990.

[22] A. Schulman, D. Maxey, and M. Pietrek. Undocumented Windows. Addison-Wesley,
June, 1992.

[23] E. MacKenzie. Computer Graphics. Lecture Notes, Dept. of Computer Science,
University of Edinburgh, October, 1993.

[24] J. Foley, A. van Dam, S. Feiner and J. Hughes. Computer Graphics: Principles and
Practice. Addison Wesley, 1990, reprinted with corrections, November, 1991.

[25] J. McGregor and A. Watt. The Art of Graphics for the IBM PC. Addison Wesley,
1986.

[26] L. Atkinson and M. Atkinson. Using C. Que Corporation, 11711 N. College Avenue,
Carmel, IN 46032, 1990.

[27] P. Wegner. Learning the Language. Article in Byte Magazine volume 14, no 3,
March 1989.

[28] A. Aho, R. Sethi and J. Ullman. Compilers|Principles, Techniques and Tools.

Addison-Wesley, 1986.

59

